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Chapter 1

Introduction

This introductory chapter explains the basic principles of active noise control
(ANC) and active vibration control (AVC). From the elementary outline, the key
elements of the research are motivated, the control problem considered in this the-
sis and basic assumptions are described and an overview of the literature is given.
At the end of the chapter, a summary of the personal contributions in this thesis
and an outline of the remaining chapters is sketched.

1.1 Principle of active noise and vibration control

1.1.1 The need for noise and vibration reduction

Noise disturbance is a major threat to (mental) health as reported by the World
Health Organization in [7,192]. Some important fields where the reduction of noise
disturbance is important are:

• Take-off and landing of airplanes (e.g., [133]);

• Highways and railways close to urban and natural environments;

• Engine and airflow noise in interior of airplanes, cars, trains, etc.;

• Engine noise in crew/passenger cabins on ships;

• Industrial machines (e.g. metal/wood cutting, drilling);

• Military aircraft, vehicles, launching of projectiles;

• Air conditioning systems;

• Electronic transformers.

Often, noise disturbances are generated by vibrations in mechanical structures. In
principle they are just disturbing waves propagating through different media. In
our terminology we use noise disturbance for undesired sound, i.e. a disturbing
wave propagating through air, and vibration disturbance for the undesired vibration
of mechanical structures, i.e. a disturbing wave propagating through materials.

1



2 Introduction

Vibration disturbance is not only a source for noise disturbances, but also com-
plicates accurate positioning or damaging of materials. Some important sources
for vibration disturbances are:

• External vibrations distorting positioning of (optical) precision instruments
and lightweight manipulators;

• Vibrations in mechanical structures resulting in damage and fatigue, such as
in (railway) bridges;

• Earthquake generated vibrations acting on civil structures (e.g. buildings and
bridges).

The methods for attenuating noise and/or vibration disturbances may be clas-
sified into passive and active approaches. The principles of both approaches are
sketched in the following subsections.

1.1.2 Passive noise and vibration control

The classical solution to reduce noise disturbances is for example by adding iso-
lation or damping material, cf. Figure 1.1(a). Often, vibration disturbances are
reduced by using damped springs and (extremely) heavy and stiff mechanical de-
sign. These approaches are called passive since no additional energy is injected, and
the suppression is by means of reflection or by increasing the dissipation of the en-
ergy contained in the disturbing waves. The advantage of these passive approaches
is that high frequency disturbances (above ≈1kHz) can be effectively suppressed.
However, to isolate low frequency disturbances noise (below ≈1kHz) the thickness
of the isolation material should be large, since the thickness of the isolation mate-
rial is related to the wave length of the disturbance wave(s). Similarly, to isolate
low frequency disturbing vibrations heavy and stiff isolation materials are needed.
In many situations, adding big and heavy isolation material is undesirable, because
of increased fuel consumption, reduced available space, reduced mobility (due to
increase of weight), etc.

1.1.3 Active noise and vibration control

A fundamentally different approach is to reduce the disturbing noise or vibration
by interference with (approximately) the same wave up to 180◦ phase shift (i.e. its
negative), cf. Figure 1.1(b). An active noise or vibration suppression system con-
sists of basically three components, cf. Figure 1.2. 1) Sensors which measure the
disturbance or an upstream reference signal measured near the disturbance source.
2) Actuators which inject an anti-disturbance, or also called secondary disturbance,
in the system, such that interference of the disturbance and the secondary distur-
bance yield a lower disturbance level at the so-called ‘region of silence’. 3) An
electronic device, the controller, to determine the control signal for the actuators
producing the secondary disturbance given the measurements from the sensors,
measuring the upstream reference and the residual disturbance at the region of
silence. This approach is called active since, contrary to the passive approaches,
energy is injected in the system.
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(a) Passive approach by isolation in an airplane.
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Interference

(b) Active approach by interference.

Figure 1.1: Passive and active suppression of engine noise in an airplane.

The active approach originates from the patents of Coanda in 1930 [28], Paul
Lueg in 1936 [108] and Olson in 1953 [131]. Though the principle was correct,
the practical implementation was naive and did not yield satisfying results [95].
In the sixties and seventies of the previous century, the digital signal processor
(DSP) was developed, which yielded much more freedom for the control algorithm.
Application of the DSP leaded to a breakthrough in active noise and vibration
control (ANVC). Many researchers have been active in this field, and overviews of
the results are provided in a number of textbooks, e.g., [46, 64,90,126,140,173].

The advantage of the active approach is that especially low frequency distur-
bances (below ≈1kHz) can be effectively suppressed without adding isolation ma-
terial. In this sense, the active approach is an addition for passive approaches
to improve disturbance suppression in the low frequency range. To actively sup-
press also high frequencies, not only the sampling rate needs to be increased to
satisfy the Nyquist sampling criterion, see, e.g., [93], but also the number of reso-
nance modes in the system will increase significantly. For example, in 3D acoustic
enclosures the number of modes increases cubically in frequency, see [126]. This
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Tacho meter
DSP

Region of silence

Figure 1.2: Basic setup of an active noise/vibration control system illustrated on
an airplane, the tacho meter measures the rotation velocity of the engine, the DSP
controls the loudspeaker to generate the anti-noise, the microphone measures the
residual noise. Usually arrays of multiple loudspeakers and microphones are used
in airplane applications.

increase of the number of modes will complicate the controller design. In general,
to suppress higher frequencies also more sensors and actuators are needed, since
the wavelength of the disturbance is decreased. With the current status of digital
computation power, sampling rates between 1kHz and 10kHz are feasible for most
active noise and vibration control (ANVC) problems.

Disturbing noise is often generated by radiation from vibrating mechanical
structures. By reducing the vibration in the structure by means of active control,
also the radiated noise will be suppressed. However, particular vibration modes in
the mechanical structure are radiating the noise more efficiently than others, such
that more weight has to be given to suppress these efficiently radiating modes. The
active control of the vibration with the objective to reduce the power of the radi-
ated noise, is known as Active Structural Acoustic Control (ASAC). The ASAC
problem is currently extensively studied in the literature, see [8, 35,66,121,161].

Usually, active control is applied in addition to passive control of noise and/or
vibration. The integral design of joint active and passive methods is called hybrid
controller design. The main question in the research on hybrid control design is to
effectively combine active and passive methods, and has also been studied within
the scope of the Knowledge Center “Sound and Vibration” of TNO Institute of
Applied Physics and the University of Twente, see, e.g., [6].

Recently, active control methods are also applied in adaptive optics to coun-
teract disturbances in the wavefront of light beams in astronomical observations.
The actuator is usually a deformable mirror. For examples, we refer to the MSc.
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theses [32, 88] which were also part of the subprogram Robust Active CONtrol
(RACON) within the scope of the Knowledge Center “Sound and Vibration”.

1.2 Motivation

Though ANVC is a successful method to suppress low frequency disturbances, it
has (still) some drawbacks:

• Necessity of equipment: sensors, actuators, a DSP, power-supplies and ca-
bling.

• Lack of robustness: most ANVC algorithms are using a model of the (acous-
tical or mechanical) plant. These models are always contained with model
errors, e.g. caused by variations in the dynamics of the plant, and may yield
degraded performance or even instability.

• Slow convergence: in most ANVC systems adaptive algorithms are used which
are slowly converging in time, especially for broadband stochastic distur-
bances in multiple channel systems.

• Computational complexity: acoustical or mechanical systems are infinite di-
mensional systems and often relatively weakly damped, hence modeling these
systems with finite dimensional models yields models with high orders (order
≈ 20−100) and long impulse responses (≈ 100−1000 taps). Since most con-
trol algorithms are using these complex models the computational complexity
is high.

• Tracking performance: most active control algorithms yield poor performance
for non-stationary disturbances.

The first drawback is inherent to the active approach: instead of adding isolation
or damping material, adding electronic equipment with sensors, actuators, a DSP,
power supplies and cabling is necessary. One objective in the design of active control
systems can be to reduce the amount of this equipment by optimizing sensor and
actuator positions (see, e.g., [34]) and/or using instead of DSP’s simple electronic
devices (e.g., just single channel analogue integrators and amplifiers as in [66]). For
example in applications to actively reduce noise disturbance in airplanes (see, e.g.,
[81]) and cars (see, e.g., [146]) reduction of the amount of equipment is important
to reduce the financial costs and the complexity of the control problem. In this
thesis, we will assume that the sensor and actuator positions are already optimized
and no special constraints on the controller implementation are imposed (apart
from that it should be possible to implement the control algorithm on nowadays
DSP’s).

Robustness should be taken into account in every active controller design. In
normal operation the ANVC system should operate continuously within a period
of some hours (a working day) till some days or even longer. In this period the
dynamics of the acoustical or mechanical plant may change significantly, due to,
e.g., moving of objects which changes the reflection in acoustical systems, mass
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load variations which change vibration dynamics, temperature and humidity vari-
ations. These variations may yield undesired large performance reduction or even
instability. Therefore the control algorithm should possess performance robustness
and stability robustness, which means that the controller does not yield a signifi-
cant loss of performance or yield instability respectively, in case of changes in the
plant dynamics. However, increasing the performance and/or stability robustness
is at the expense of lower performance for the situation the plant equals the model
on which the controller is based, i.e. the nominal performance is reduced. Hence,
there is a trade-off between performance and stability robustness on one side and
nominal performance on the other side. One main objective of this thesis is to
improve this trade-off.

The convergence time of LMS-based adaptive algorithms (see the Filtered-X
LMS and Filtered-U LMS algorithms below that are widely used in ANVC) is very
long for broadband disturbances, especially when the controller has multiple chan-
nels. To be useful in practice, it is desired that this convergence time is in the
range of a few minutes rather than several hours (e.g. to obtain fast adaptation to
variations in the system dynamics, and to ease the tuning of the controller param-
eters). On the other hand, most algorithms which have a short convergence time
are computationally rather complex. Therefore, the second objective of this thesis
is to improve the trade-off between the convergence time and the computational
complexity.

Non-stationary disturbances are the result of e.g. variations in the rotation ve-
locity of engines, changes in the velocity of airplanes, cars, trains, which change the
airflow and/or the road-tire or road-wheel interaction. Also changes in the dynam-
ics of the plant may yield non-stationary disturbances, e.g. opening/closing a door
of a room changes the dynamics of the room and thus also the noise disturbance
inside the room. Though, this thesis will not discuss the tracking of non-stationary
disturbances in much detail, the algorithms proposed in Chapter 6 and Chapter 7
are also promising for non stationary applications.

1.3 Problem description and basic assumptions

This section briefly introduces the active control problem considered in this thesis
from a practical point of view and outlines the basic assumptions. The problem
will be described in more mathematical detail in Chapter 2. The end of this section
sketches the strategy of the research of this thesis.

1.3.1 Control system configurations

In ANVC three main control system configurations can be distinguished:

• Feedforward control problem (depicted in Figure 1.3);

• General feedforward/feedback problem (depicted in Figure 1.4);

• Feedback control problem (depicted in Figure 1.5).
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Figure 1.3: Block scheme of the feedforward active control problem, with s the
signal from the disturbance source, d the disturbance to be cancelled, r the reference
signal. The controller C computes the control signal u, which causes the secondary
disturbance y and yields the residual disturbance e.
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Feedforward control. First, consider the feedforward control problem as de-
picted in Figure 1.3. The disturbance signal generated by the disturbance source
is denoted by s. For example, this signal represents the noise generated by vans
in airconditiong systems, the noise or vibrations generated by engines in cars or
airplanes or the vibrations induced by road-tire interaction. This signal will be a
vector signal, when there are multiple disturbance sources. In general we are not
able to effectively suppress this disturbance signal s directly at the source. But
often, it is only needed to suppress the disturbance caused by s at some specific
places, such as at the drivers, c.q. pilots, and passenger places in cars and airplanes
or only at the end of exhaust pipes in cars or airconditioning systems. The distur-
bance caused by s, at the positions where disturbance suppression is obtained, is
denoted by d. The path between s and d is called the primary path and denoted
by Ges.

In feedforward control systems a reference signal r is available which is the input
to the controller C. In applications with rotating engines r is usually chosen to be
the rotation velocity measured by a tacho meter, c.f. the setup in Figure 1.2. In
applications where s is a stochastic broadband signal, such as in case of vibrations
generated by road-tire interaction, r is measured by a sensor positioned close to the
disturbance source. For example, r is measured by accellerometer sensors mounted
on the car chassis. The path between s and r is called the detector path and
denoted by Grs. The idea in feedforward control is that the reference signal r is
strongly correlated with the disturbance signal d at future time instances, such that
d can be predicted from r. Therefore r should be measured closer in distance to s
than d, and r is referred to as the upstream reference signal and d the downstream
disturbance signal.

The control signal u, computed by the controller, actuates loudspeakers or
shakers to excite a secondary disturbance noise or vibration respectively. This
secondary disturbance, denoted by y, interferes with the disturbance d and yields
a residual disturbance e. The path between u and y is called the secondary path
and denoted by Geu.

The control signal should be determined such that e is ‘as small as possible’ (ac-
cording to some criterium, see Chapter 2). This is ideally obtained when the series
connection of Grs, C and Geu is exactly the oposite of Ges, which yields perfect
cancellation. In case of stochastic disturbances, a necessary condition to obtain this
perfect cancellation, is that the amount of delay in Grs and Geu is smaller than the
amount of delay in Ges, which is due to the fact that C should be causal. From this
observation, we conclude that it is desired that the reference sensors are positioned
as close as possible to the disturbance sources, that the actuators are positioned
as close as possible to the disturbances to be cancelled, and the distance between
the disturbance sources and the disturbances to be cancelled should be as large as
possible. Refer to Section 2.2 on page 31 for a more mathematical discussion of
these system characteristics determing the performance.

General feedforward/feedback control. Contrary to applications with har-
monic disturbances, in applications with broadband disturbances the reference sig-
nal is usually distorted by feedback of the control signal u, as is illustrated by
Figure 1.4. Here, the feedback path is denoted by Gru and is usually called the
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acoustical feedback in acoustical applications. In general, we will refer to this
feedback as the intrinsic feedback.

This feedback term does not (at least not directly) determine the optimal perfor-
mance that can be obtained by a particular feedforward control system, as will be
seen in Section 2.4 on page 45. But it determines the closed loop behavior together
with the controller C, which will be unstable when C is not designed properly. This
is an important aspect in controller design for systems with feedback and will also
be addressed in this thesis, e.g. Section 4.5 on page 90.

Feedback control. In many applications with broadband disturbances, it is dif-
ficult or even impossible to measure an upstream reference signal which is strongly
correlated with the disturbance d. For example, this is due to the fact that there
are many disturbance sources at different locations, the disturbance d to be sup-
pressed is already very close to the source (in this case Grs ≈ Ges and Gru ≈ Geu),
or locating sensors close the disturbance source is difficult due to extreme (e.g.,
temperature) conditions. In these applications, the control signal u needs to be
determined by feedback of the measurements of the residual disturbance e, as is
illustrated by Figure 1.5.

The performance that can be obtained by a particular feedback problem, is
(basically) determined by two aspects: 1) the delay in the secondary path Geu and
2) the correlation in the disturbance signal d. When the delay is large, then the
disturbance d needs to be predicted further in time to determine the current value of
the control signal u. In addition, when the correlation between subsequent values
of the disturbance signal d is very weak, it is not possible to accurately predict
future values of the disturbance signal, which will degrade the performance.

Note, that the feedback control problem is a special case of the general feedfor-
ward/feedback control problem, where Grs = Ges and Gru = Geu.

Further note, that again a closed loop is involved which is determined by the
controller C and the secondary path Geu, such that stability of the closed loop
needs to be taken into account when designing C.

In case of feedback control, where the objective is to minimize e in Figure 1.5, it
is desired that the delay in Geu is as small as possible, as mentioned before. Ideally
this delay is zero, which corresponds physically with a collocation of actuators
and sensors, i.e. each sensor is mounted rigidly to one actuator. In practice perfect
collocation is not possible, though the system can be considered to be collocated up
to a certain frequency. This means, that for higher frequencies the delay between
the actuator and the sensor results in a phase shift which cannot be compensated
by any causal filter, and thus cannot be neglected anymore. The design and control
of these collocated systems is discussed in [140] for application in vibration control,
also refer e.g. to the series of papers [11, 66, 67] for application in ASAC. For
(approximately) collocated systems good performance and stability robustness can
be obtained by relatively simple lead-, lag- and proportional-integral-derivative
(PID) controllers, e.g. [140]. In this thesis, we will not focus on systems which can
be considered as collocated, and thus do not put constraints on the positioning of
sensors and actuators. But note, that actuator and sensor positioning is indeed
an important issue in the design of the system. Further note, that when using
discrete-time implementations of PID controllers (as is very common because of
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the flexibility of DSP’s) low-pass filters are needed to reconstruct a continuous-
time control signal and to prevent aliasing effects. These low-pass filters have to
be designed with care, since phase-lag is introduced, such that the bandwidth of
the controller need to be reduced to preserve stability.

1.3.2 Basic assumptions

In this thesis, the following underlying assumptions will be made on the physical
systems and signals:

1. Stochastic broadband disturbances, which are stationary or slowly non-
stationary, in the sense they can be assumed stationary for the time necessary
to compute the controller.

2. Linear dynamic systems, which are time-invariant or its time-variation small
such that it can be considered as uncertainty.

Stochastic broadband disturbances. The disturbance to be suppressed is con-
sidered to be a random noise process, which power spectrum is ‘broad’, i.e. the
power of the disturbance signal is distributed over a particular bandwidth (e.g. typ-
ically ≈ 50 − 1kHz) rather than located at single frequencies. Further, we will
assume that the disturbance is stationary or semi-stationary, in the sense that over
a period of a few seconds till a few minutes it can be considered to be stationary.
So, here we will exclude non-stationary disturbances, such as speech signals or fast
harmonic sweeps (e.g., due to fast acceleration of engines). As already said, though
this thesis will not discuss the tracking of non-stationary disturbances some results
are also promising for non-stationary applications, but needs further investigation.

So, the focus here is on stationary stochastic broadband disturbances. One can
think of noise generated by jet engines [170], or road-tire (cars) [35] or rail-wheel
(trains) [172] interaction or airflow around structures [169], just to name a few.
Since the disturbances are stochastic the disturbance in the future is not (precisely)
known, contrary to deterministic disturbances (single harmonic or broadband).
In general there is correlation between the past and the future signal values of
the disturbance, such that future signal values can be predicted given past signal
values. The possibility to predict the future disturbance is crucial in active control
to determine the control signal such that the disturbance will be counteracted.

Linear dynamic systems. The propagation of acoustical waves in enclosures,
such as an airplane cabin or an air conditioning duct, can be described by linear
partial differential equations (PDE’s), see e.g., [126]. Also, the mechanical vibra-
tions in structures can often be described by linear PDE’s, see e.g. [64]. Therefore,
the first basic assumption we will make in this thesis is that the system can be
considered as linear. Since, actuators and sensors are supposed to be part of the
system, they are also assumed to be linear. Usually this assumption can be satis-
fied in practice very well. But care needs to be taken, especially in selecting the
actuators to prevent non-linear hysteresis and/or saturation behavior, which may
arise when using large voltages across piezoceramic actuators. We will also assume
that the system is time invariant, or slowly varying around a particular average.
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In this thesis we will consider possible time variations in the system as uncertainty
for which the controller should be sufficiently robust.

1.3.3 Strategy of the research

Model-based controller design. A general approach to design controllers for
feedforward or feedback control configurations is by minimizing a certain cost func-
tion, i.e. a performance measure, which is determined by an (accurate) model of the
system. Since the acoustical or mechanical systems to be controlled are infinite di-
mensional systems, in fact also infinite dimensional models need to be determined.
This can be done by determining the coefficients of the PDE’s describing the sys-
tem and the boundary conditions, which are determined by material and physical
constants. However, in practice it is very difficult to determine the coefficients ac-
curately, whereas the solutions of the PDE’s are quite sensitive to the coefficients.
In addition, the controller design is a difficult task since infinite dimensional sys-
tems are involved, c.f. e.g. [30]. But usually within a limited frequency band as
considered in this thesis, these infinite dimensional systems can be approximated
accurately by finite dimensional systems, though these finite dimensional systems
may be of large order (orders ranging from 60-80 are not exceptional). Finite di-
mensional models can be estimated directly from input/output data by black-box
model identification methods, such as Prediction Error Model (PEM) identifica-
tion [104] or Subspace Model Identification (SMI) [177, 181], c.f. the discussion in
Section 3.3 on page 53, which shows a preference for SMI methods. The obtained
models are discrete-time models, which describe the dynamics between the sam-
pled input and the sampled output signals obtained by digital to analogue (AD)
and analogue to digital (DA) converters respectively. Because controllers can be
easily implemented in DSP’s, which are discrete-time digital signal processors, we
will only consider discrete-time controllers in this thesis.

Model uncertainty. Models are always contained with model errors, e.g., due to
measurement noise, limited number of samples, mismatch in the model structure
or time variations in the system. Designing a controller by minimizing the cost
function based on an imprecise model, may yield a controller which may provide
significantly lower performance on the real system in comparison with the perfor-
mance on the model, or the controller may even lead to instability in systems with
a closed-loop. Hence, the model uncertainty needs to be taken into account in
designing the controller. There are basically three approaches to account for the
model uncertainty in designing the controller:

• Adaptive control: periodically, based on new measurements from the sys-
tem, adjust the controller coefficients in the direction the cost function de-
creases;

• Control-relevant identification: design the controller by minimizing the
cost function using the model as well as measured data from the system;

• Robust control: optimize an alternative (robust) or constrained cost func-
tion which is less sensitive to model errors.
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These approaches are not fully independent, for example, there exists robust adap-
tive control algorithms and robust control-relevant identification methods.

The adaptive control algorithms are usually feedforward controller algorithms.
These algorithms can be applied for applications with feedback using the so-called
Internal Model Control approach as discussed in the next section and in more detail
in Section 2.3. The adaptive algorithm that is mainly used for ANVC applications
is the so-called Filtered-X Least Mean Squares (FxLMS) algorithm. This algo-
rithm, which will be discussed in Section 1.4.1, has some nice properties such as
easy implementation and its (convergence) behavior is well known in literature.
However, for broadband disturbances the convergence of this algorithm may be
very slow, especially for multichannel applications. Furthermore, the algorithm
needs a model of the secondary path Geu, but model errors may lead to instability
of the update algorithm. Also the computational complexity of the algorithm may
be quite severe since the controller consists of a tapped delay line which may be
very long.

Robust control algorithms, such as the H∞ optimal control [199], are not yet
widely used in ANVC applications. The H∞ control method using user defined
weighting functions for the model uncertainty, has been used in [86] to control
noise in a double wall panel. But here, it was concluded that the H∞ design
method introduces too much conservatism, such that no good performance could
be obtained.

Research question. The question which we want to answer in this thesis, is
whether new results in system, control and identification theory can solves these
problems and yield robust control algorithms, which are quickly providing good,
c.q. almost optimal performance, and are computationally feasible to be imple-
mented on nowadays DSP’s. In the first part of the thesis, we focus on accurate
model identification, control-relevant identification, quantification of the model un-
certainty and robust controller design. In the quantification of the model uncer-
tainty and the robust controller design, we will follow and further develop a prob-
abilistic robust control approach. Then, in the second part of the thesis we focus
on adaptive control algorithms and analyze convergence properties and propose
robust and fast converging adaptive algorithms motivated by (non-adaptive) con-
cepts from the first part of the thesis. For a detailed overview of the thesis we refer
to Section 1.6.

Though the analysis and development of feedforward and feedback control al-
gorithms in this thesis, is primarily dedicated to disturbance suppression in active
control applications, the results may also be usefull for other control applications,
like the control of deformable mirrors in adaptive optics [174] or gas and liquid flow
control [65].

1.4 Literature overview

1.4.1 Adaptive control

Filtered-X LMS and Filtered-U LMS. Most practical active control sys-
tems are based on the Filtered-X LMS (FxLMS) adaptive algorithm —proposed
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independently by Burgess [21] and Widrow et al. [191])— or the Filtered-U LMS
(FuLMS) adaptive algorithm —proposed by Eriksson et al. [49]). As an illustration
for the application to suppress interior aircraft noise we refer to [12, 17, 40]. Both
algorithms are feedforward adaptive algorithms which need an ‘upstream’ reference
signal (cf. the tacho meter signal in Figure 1.2), correlated with the disturbance
to be canceled. This reference signal is the input to the filter which calculates the
control signal. In the FxLMS algorithm this filter is a tapped-delay filter, which
has a finite impulse response (FIR), and in the FuLMS algorithm a transfer func-
tion matrix, which has an infinite impulse response (IIR). The filter coefficients are
adapted every sampling instant by a least means squares (LMS) algorithm using
the measured residual disturbance [189]. The regressor is constructed by filtering
the reference signal (and also the control signal for FuLMS) by a model of the sec-
ondary path, i.e. the system between the control actuators and the sensors which
measure the residual disturbance (hence the names “Filtered-X” and “Filtered-U”
LMS). This is because, the presence of the secondary path changes the surface of
the cost function, and thus the gradient estimate needs to be adjusted accordingly.
This is also one of the differences between adaptive (recursive) identification and
adaptive active control.

The FuLMS algorithm can be seen as the IIR filter extension of the FxLMS
algorithm, using Feintuch’s LMS algorithm [50] to update the IIR filter coeffi-
cients. The FuLMS algorithm was proposed in [49] for applications where there
is feedback from the control signal to the reference signal (in acoustical applica-
tions called acoustical feedback), but no convergence analysis had been given. The
algorithms would also be useful in applications where the optimal filter contains
weakly damped modes such that the choice of a very long FIR filter for FxLMS
can be avoided.

The main advantage of the FxLMS and the FuLMS is their computational
simplicity. The computational complexity of FxLMS for a single channel system is
O(4nw + 2ns) floating point operations (flops) per sampling instant, with nw the
number of taps in the FIR filter and ns the number of taps in the FIR model of
the secondary path. The computational complexity of FuLMS is O(4na + 4nb +
4ns) flops per sampling instant, with na and nb the number of coefficients in the
controller numerator and denominator polynomials respectively.

Convergence and robustness of FxLMS and FuLMS. The algorithms are
well studied in literature, especially the FxLMS algorithm, and some nice properties
and variants are revealed. To start with, Hassibi et al. [76] showed that the LMS
algorithm is H∞ optimal. More precisely, they showed that, under some bound on
the step size, the worst case energy of the error, obtained by LMS, is bounded by
the energy of the measurement noise (no matter its source) and the squared norm
of the initial estimate of the filter coefficients (weighted by the step size). Hence a
performance robustness bound has been obtained for the LMS algorithm. Though
the consequences of this analysis has not yet been fully analyzed for the FxLMS
and FuLMS algorithms, it seems reasonable to assume that similar performance
robustness bounds exists for these LMS-based algorithms. Inspired by the analysis
in [76], Sayyar-Rodsari et al. [154] proposed a mathematical sound alternative for
the FxLMS algorithm (and in [153] also for the FuLMS algorithm) for which a
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similar performance bound as in [76] was derived. The algorithm shows improved
convergence and robustness compared with the FxLMS algorithm, but its compu-
tational complexity is significantly larger; at least O(n2

w + nwns + n2
s)

1, which is
not feasible in many high dimensional applications. Inspired by the systematic syn-
thesis of [153] and results in fast-array algorithms [147, 151], this thesis proposes
a computationally much more efficient algorithm in Chapter 7 (with complexity
linear in nw and ns).

Conditions for the stability of the FxLMS update algorithm have been derived
by Ren and Kumar [142] for the single channel case and Wang and Ren [188]
for the multiple channel case. The analysis is based on the ordinary differential
equation (ODE) approach to analyze the convergence of pseudo linear regressions
(PLR’s) developed by Ljung [101, 102]. Their result is that, under the condition
that the secondary-path model is ‘close’ to the secondary path system in the sense
that a particular strictly positive real (SPR) condition is satisfied, the step size
vanishes and the input is persistently exciting, the filter coefficients asymptotically
converge to their (unique) optimal value. Hence, the SPR condition is a bound on
the stability robustness of the FxLMS update algorithm w.r.t. model uncertainty
in the secondary-path model.

The analysis of the FuLMS algorithm is more difficult since an IIR filter is
adapted, such that the control signal is not depending linearly on the filter coeffi-
cients. Hence, the cost function obtained to be minimized is not a convex function
of the filter coefficients and local minima may exist, as was pointed out in the com-
ments [84,190] on Feintuch’s paper [50]. Again using the ODE approach of [101,102]
(see also the textbook [106]) an SPR condition could be derived which guarantees
that the cost function is convex in the IIR filter coefficients and the coefficients
will asymptotically converge to their (unique) optimal value (also see the overview
paper [157]). Based on this result Wang and Ren [187] also derived an SPR con-
dition for global convergence of the FuLMS algorithm for the single channel case
and Mosquera et al. [125] for the multiple channel case. Note, that the number of
coefficients in the numerator and denominator of the optimal IIR filter need to be
known and again the step size should vanish. However, these references, [125,187],
made a rather strict assumption that the system is such that all correlation be-
tween the reference signal and the residual noise could be removed, which is called
perfect cancellation. In practical applications this is often not the case due to
non-minimum phase behavior in the system. The assumption was made to directly
adopt the results of [101, 102] on adaptive identification. This thesis reveals in
Chapter 5 that this assumption is not necessary.

Drawbacks of FxLMS and FuLMS and alternative adaptive algorithms.
Beside these nice results of computational efficiency, performance robustness w.r.t.
measurement disturbances, stability robustness of the update rule w.r.t. secondary
path model errors, FxLMS and FuLMS suffer to some important drawbacks:

1In [153] the secondary-path is modeled by a state-space model. Since the FIR model-structure
is contained in the state-space structure, the algorithm can also be used for secondary-path models
with FIR structure. The complexity of O(n2

w + nwns + n2
s) is based on the FIR structure. In

case a full state-space model has been used the complexity is at least O(n2
w + nwns + n3

s), with
ns the dimension of the secondary-path state.
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• Choice of the number of filter coefficients (for FuLMS the order of the nu-
merator and denominator polynomials);

• Choice of step size;

• Divergence in case the SPR conditions are not satisfied;

• Slow convergence in case of broadband disturbances especially in multi-channel
applications.

The choice of the number of filter coefficients in FxLMS and FuLMS is usually
based on trial and error in combination with physical insight.

The choice of the step size is simplified by using the normalized LMS (NLMS)
algorithm (see e.g., the textbooks on adaptive filtering [80, Sec. 9.11, p. 432-
437] or [149, Sec. 5.6, p. 225-233]), in FxLMS and FuLMS, which improves the
convergence rate too.

Divergence of FxLMS and FuLMS can be prevented by increasing the robustness
of the adaptive algorithm by introducing a leakage term (see, e.g., [80, p. 441-
442, 746-747], [149, e.g., p. 325] and for active control application [197] and [46,
Sec. 3.4.7, p. 144-149]). Adding leakage to the adaptive algorithm can also be
interpreted as adding a control-effort weighting to the cost function minimized
by the adaptive algorithm. Increasing the leakage (control-effort weighting) will
increase the stability robustness of the update algorithm, but also will reduce the
performance. Therefore, in case the SPR condition is not satisfied in a particular
frequency band, the leakage, or equivalently the control-effort weighting, can also
be chosen to be frequency dependent, to increase robustness only in that specific
frequency band, see, e.g., [48, 59].

The convergence rate is determined by the ratio between the largest and smallest
eigenvalue of the auto-covariance matrix of the regression vector. This ratio is
determined by the auto-spectrum of the reference signal and the dynamics of the
secondary path model and can be very large for broadband disturbances. The
convergence rate can be made independent of the auto-spectrum of the reference
signal and the dynamics of the secondary path model by using the Newton LMS
algorithm (see, e.g., [149, Sec. 4.5, p. 191-193]). In Newton LMS the update of
the filter-coefficients is based on estimates of the auto-correlation of the regressor
and the cross-correlation between the regressor and disturbance. The Newton LMS
algorithm contains only a single convergence mode and (thus) yields a ratio between
the largest and smallest eigenvalue of the regressor auto-covariance matrix which
is equal to one. In this way the convergence rate is only depending on the step size,
which can be chosen such that fast convergence is obtained. However, in general the
Newton LMS algorithm requires the inversion of an nw × nw dimensional matrix,
with nw the number of coefficients of the adaptive filter, every sampling instant (or
every blockperiod, when using a blockwise algorithm). The inversion takes at least
O(n3

w) flops and thus the computational complexity of Newton LMS is too large for
most practical active control applications, even if the update is not calculated every
sampling instant. The computational complexity of the Newton LMS algorithm is
reduced when using an a priori determined inverse of the regressor auto-covariance
matrix, as, e.g., considered in [46].
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Another approach, to obtain a ratio between the eigenvalues equal to one, is
to prefilter the reference signal with a whitening filter, which is such that also all
channels of the reference signal are independent (see, e.g., [149, Sec. 10.1, p.573-
584]). In case there is also a secondary path, an inner-outer factorization of the
secondary path model is used with the inner-factor, an all-pass filter (isometry),
containing the non-minimum phase transmission zeros of the secondary path and
the outer-factor minimum phase (thus stably invertible). The control signal —the
output of the adaptive filter— is filtered with the inverse outer-factor, such that the
transfer between the adaptive filter output and the error sensors is (approximately)
equal to the inner-factor. For applying the Filtered-X LMS algorithm, the (pre-
whitened) reference signal is filtered with the inner-factor of the secondary-path
model. This algorithm is proposed in [45, 47] and also yields a ratio between the
eigenvalues equal to one (see [160,195] for similar preconditioning algorithms, and
[58] and Chapter 5 for preconditioning of FuLMS). It appears that the robustness
of FxLMS may deteriorate due to preconditioning, therefore Chapter 6 proposes a
robustification of this preconditioned FxLMS algorithm.

Another alternative for the FxLMS algorithm to increase the convergence rate,
is given by the affine projection algorithm (APA), see [41], see also [149, Sec. 5.8,
p. 238-245], fast implementations of APA for active noise control are proposed
in [18, 19]. The basic idea of the APA algorithm is to approximate the Newton
LMS update direction using estimates of the auto-correlation of the regression and
the cross-correlation between the regression and the disturbance by using a limited
number of averages, say P . Using the matrix inversion lemma (MIL) the inversion
of the auto-correlation matrix can be evaluated with complexity O(P 3), which is
much more efficient than O(n3

w) if P � nw. For P = 1 the normalized FxLMS
algorithm is obtained and for P →∞ the Newton LMS algorithm.

Finally, the recursive least squares (RLS) algorithm is known to provide the
optimal (minimum-variance) estimate of the filter-coefficients every sampling in-
stant, see, e.g., [85, Sec. 2.6, p. 55-58], [149, Sec. 5.9, p. 245-248]. However,
the computational complexity of RLS is O(n2

w), which is too large for most prac-
tical applications. Fast-array and fast transversal filters (FTF) implementations
of the RLS algorithm exists with much lower computational complexity (O(16nw)
for the numerically better conditioned fast-array algorithms, and O(8nw) for the
FTF algorithm). These fast algorithms are derived by exploiting shift structure
which comes into the problem thanks to the tapped-delay structure of the filter,
see, e.g., [149, Ch. 14, p. 816-873] for a good overview. The application of the fast
implementations of the RLS algorithm to ANVC is discussed in, e.g., [4, 51, 156].
But for application in ANVC, a modification was necessary to compensate for de-
lay introduced by filtering the reference signal by the secondary path model [51].
This modification was proposed earlier by Bjarnason in [15] for the FxLMS algo-
rithm. Because using the RLS algorithm the filter-coefficients are varying faster,
the effect of the delay is more dominant and the modification is more important.
The derivation of the modified RLS algorithm for active control purposes, which
we shall refer to as the modified Filtered-RLS algorithm, was quite ad hoc. In
Chapter 7 a fast-array Kalman filter solution to the ANVC problem is proposed
and it is shown that the modified Filtered-RLS algorithm is a special case of this
Kalman filter solution.
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Some interesting adaptive algorithms for (multiple) harmonic disturbances are
given by Meurers and Veres [117,118] who propose an adaptive frequency selective
feedback controller and by Bodson et al. [16] who propose an adaptive solution
without assuming the disturbance frequencies to be known. In this thesis we do
not go into further detail on harmonic disturbances, but will focus on stochastic
broadband disturbances.

Internal Model Control (IMC) for applications with feedback. The adap-
tive algorithms just discussed in this subsection are all for feedforward active noise
or vibration control problems where a reference signal is available which is not
distorted by feedback from the control signal. In applications with harmonic dis-
turbances such a reference signal is usually available, e.g., a tachometer signal from
rotating engines which provide the frequencies (the base frequency and if necessary
higher order harmonics) of the harmonic disturbances. However, in applications
with broadband disturbances, such a reference signal is (usually) not available.
For example in the widely used acoustical duct laboratory problem depicted in
Figure 1.6 the reference microphone, which measures the broadband sound close
to the disturbance source, also measures the sound generated by the secondary
loudspeaker which is actuated by the controller. Hence a closed loop has been
obtained, see the feedback via Gru in the block scheme2 of Figure 1.7.

To be able to continue using the adaptive algorithms discussed above, the feed-
back control problem can be reformulated into a feedforward control problem by
means of the Youla parameterization [193, 194]. The Youla parameterization pa-
rameterizes all stabilizing controllers, by means of a stable filter W . Realizing W
as an FIR filter, as is done in, e.g., the FxLMS algorithm, it is guaranteed that
W is stable, and thus the controller is internally stabilizing. For stable3 systems
Gru the Youla parameterization is illustrated by Figure 1.8. From this figure, we
observe, that the influence of the feedback from the control signal on the reference
signal is subtracted which yield a feedforward control problem

In practice Gru is not known exactly and need to be replaced by a model Ĝru,
which is yields the well known Internal Model Control (IMC) approach, see [120].

Note, that because of model errors in Ĝru the stable filter W does not parameterize
all stabilizing controllers anymore, which need to be taken into account in practice.

1.4.2 H2 optimal and robust control

The research to algorithms for ANVC problems has been dominated by the sig-
nal processing community with adaptive feedforward control based algorithms.
More recently the control systems community also addresses the broadband ANVC
problem, but as an optimal or robust output feedback control problem, see, e.g.,
[22, 38, 39, 86, 87, 97, 121, 122, 135, 139, 141]. In this section, we discuss the use of
H2 optimal and robust control methods for the broadband ANVC problem. Since,
most of these methods are model-based offline controller design methods, the next

2The notation and control problem will be discussed in more detail in Chapter 2.
3We only consider stable systems, which is not a limiting assumption, since most systems in

active noise and vibration control problems are guaranteed to be stable.
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Figure 1.6: Experimental setup of the acoustical duct.
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Figure 1.7: Block scheme of acoustical duct system2.
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Figure 1.8: Block scheme of the controller C determined by the Youla-
parameterization for stable Gru, which parameterizes all stabilizing controllers by
the stable filter W .

paragraph compares this approach with the adaptive approach of the previous sec-
tion. Then, in the following paragraphs, various offline control design methods are
discussed: the nominal LQG/LTR, the Worst-case robust design and the Cautious
Wiener robust design methods.

Model-based offline controller design. The H2 optimal and robust control
methods proposed by researchers of the control systems community, are usually
non-adaptive algorithms where the controller is designed using a model of the com-
plete ANVC system, cf. the block scheme in Figure 1.7. The drawback of this
approach is that the controller is not able to continuously adapt to disturbance
variations. Still, the controller can be updated or redesigned after variations are
detected and new models are updated or identified. Confer the recent contributions
to iterative identification and controller design, see, e.g., [33, 69, 71, 96, 171, 175],
though further research is necessary to develop reliable fully automatic procedures
for high order systems without intervention of the user. The advantage of ‘offline’
designed controllers is that the number of real-time computations can be reduced
considerably since no update of the controller coefficients is calculated every sam-
pling instant. Slow convergence is prevented, and usually the time to compute the
‘offline’ controller is much smaller than the convergence time of FxLMS or FuLMS.
But the controller should be designed to be robust for model errors in order to pre-
vent the closed-loop to be de-stabilized. This is a necessary requirement in practice,
since model errors cannot be avoided. The design of robust controllers which still
provide good performance is the key issue in the ‘offline’ controller design approach.

In the following paragraphs, the H2 optimal LQG controller and various robust
design methods are discussed, which yield different trade-offs between performance
and robustness.



20 Introduction

LQG and LTR. The classical output feedback control solution to disturbance
suppression is provided by the LQG/H2 controller design method, see, e.g., [3,
85, 186]. The LQG controller minimizes the variance of the residual disturbance
summed over all channels (i.e. the trace of the covariance matrix of the residual
disturbance). However, in LQG/H2 optimal design the model of the ANVC sys-
tem, cf. Figure 1.7, is assumed to be perfect, which may lead to very poor stability
robustness, see, e.g., Doyle’s classical papers [42, 44]. At the expense of perfor-
mance, the robustness can be improved by increasing the control-effort weighting
and/or the variance of the measurement noise, cf. the loop transfer recovery (LTR)
methods of [44, 83,109]. For application to ANVC, see [13,38,39,121,122].

Worst-case robust design. Contrary to LQG/H2, the H∞ controller design
methods explicitly take into account the presence of model uncertainty by (weighted)
H∞-norm bounds on the model error, see, e.g., [43, 166, 199]. For application to
ANVC, see [22, 86, 87, 139]. However, in H∞ design, the worst case model error
condition is optimized, which may lead to too conservative controllers.

To enable a better trade-off between (robust) H2 performance and H∞ stability
robustness, mixed H2/H∞ design methods are proposed, see, e.g., [10, 155]. For
application to ANVC, see [97,141].

More recently, the minimax LQG method was proposed, see [136], which min-
imizes the MSE for the worst case model error contained in a stochastic model
uncertainty description. For application to ANVC see [134, 135]. For more on
robust H2 control, we refer to [132] and the references therein.

Cautious Wiener robust design. However, in all these robust design meth-
ods, the likelihood of the model errors is not taken into account. Such a design
philosophy may be useful in critical applications where stability and a certain min-
imal (often low) level of performance should be guaranteed under all, including
extremely rare, circumstances, e.g. in flight-by-wire control in aircrafts or biomed-
ical control applications. Most active control problems are not that critical to
pay a significant price on performance, and optimal performance on the average
of all kind of model errors is desired. An additional reason is that most model
identification methods give estimates of the likelihood of model errors, rather than
hard bounds (see the discussion in [72] and [104]). In this line Sternad and Ahlén
proposed a probabilistic robust filtering/feedforward control method, which mini-
mizes the MSE averaged over the (estimated) stochastic distribution of the model
errors [164]. The resulting robust filter is called a Cautious Wiener (CW) fil-
ter [129, 164]. This design approach can be interpreted as a frequency dependent
control effort weighting, where the weighting is determined by the distribution of
the model errors. This means, that the energy of the control signal is reduced
in the frequency bands where the variation in the model uncertainty is large. In
Chapter 4 of this thesis, the CW design philosophy is applied to feedforward and
feedback ANVC. However, here a state-space approach has been taken, which is
numerically better conditioned than the polynomial approach taken in [129, 164].
As an illustration of the cross-fertilization between control and signal processing,
Chapter 6 of this thesis applies the CW design philosophy also to increase the
robustness of FxLMS and Preconditioned FxLMS.
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1.4.3 State-space based model identification and control

State-space models. Contrary to tapped delay (FIR) and transfer function
models, state-space models are not common in ANVC applications. This is be-
cause the FxLMS (FuLMS) algorithm is based on an adaptive tapped delay (trans-
fer function) filter. Since, the control signal obtained by a state-space filter is,
contrary to a tapped delay filter, not depending linearly on the filter coefficients,
a state-space filter is not very suitable to be used as adaptive filter. However,
state-space filters can be used very well in

• Optimal / robust offline control: the controller can be just a single state-space
filter;

• FxLMS (FuLMS): filtering of the reference signal (and control signal) with a
state-space model of the secondary path;

• Preconditioned FxLMS (FuLMS): Pre-whitening of the reference signal and
filtering the adaptive filter output with the inverse outer factor of the sec-
ondary path model;

• Reformulating adaptive filter problems as state-estimation problems: con-
sidering the adaptive filter problem as a state-estimation problem allows a
unified analysis of numerous adaptive (RLS) filter algorithms as is demon-
strated in [151], see also [154] for application to ANVC.

Hence, there might be some potential for state-space filters in ANVC. But, what are
the advantages of a state-space filter over the tapped delay and transfer function
filters? Advantages of the state-space structure is that it allows a compact and
general model description, and it allows fast and numerically reliable filtering:

• Compact model description: If a model contains all observable and con-
trollable modes of the system, increasing the number of inputs and outputs
does not increase the model order; stated otherwise, the dynamics which is
visible at multiple outputs is modeled just once. For FIR models or transfer-
function matrices, the relation between the inputs and each output is modeled
separately.

• General model description: The state-space model description is gen-
eral, in the sense that it contains the tapped delay and transfer function
model descriptions as special cases. Since, the state-space model description
is unique up to a similarity transformation (i.e. a linear transformation of
the state), there are (infinite) alternative choices for the state-space matri-
ces (A,B,C,D), given by (TAT−1, TB,CT−1, D) with T any non-singular
matrix. For example one can choose (A,B,C,D) such that

AAT + BBT = I (input-normal form)

or
AT A + CT C = I (output-normal form)

with I the identity matrix. Other important alternative realizations are the
balanced realization, the controller and observer canonical forms and the
modal form [68].
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• Fast filtering: There is a fundamental trade off between fast implementa-
tions and numerical reliability, see [68]. For example, the modal form and the
observer and controller canonical forms enable very fast filtering especially
for multiple channel filters, but are often sensitive to round-off errors due to
finite word length arithmetic. The input- and output-normal form also allow
fast filtering using unitary rotations (see Appendix C), but are less sensitive
to round-off errors.

• Numerical reliability: The freedom in the state-space coefficients thanks to
the similarity transformation, can be exploited to reduce the effect of round-
off errors due to finite word length arithmetic. In [68] several methods are
proposed to obtain the similarity transformation T which minimizes the sen-
sitivity to these round-off errors. It is also shown that in general state-space
filters in input- and output-normal form have low sensitivity to round-off er-
rors.
Reduced sensitivity to numerical round-off errors may allow to use reduced
word length arithmetic, e.g. using single precision instead of double preci-
sion arithmetic, which can reduce the computation time and memory storage
considerably.

State-space based model identification. State-space models can be estimated
by black-box subspace model identification (SMI) methods, see, e.g., [177,181,185].
The subspace identification algorithms of the MOESP family [180,183,184] are all
based on the QR decomposition and the SVD, which are numerical reliable algo-
rithms. Though, the SMI methods do not explicitly solve an optimization problem
as is obtained in prediction error methods (PEM) [104], it is observed in many
practical applications (e.g. [1, 20, 114]) that accurate models are estimated, even
in case the system has an Output Error (OE) structure for which PEM methods
may converge to local optima. An additional nice property of SMI methods is that
information of the model order is given by the rank of a particular matrix (i.e.
the estimated extended observability matrix). Since in SMI algorithms no time
consuming iterative search algorithm is necessary, these methods are well suited
for the identification of multiple-input multiple-output (MIMO) systems with high
order, such as most mechanical and acoustical systems have. Fast implementations
of SMI algorithms [158] are provided in the SLICOT software library [159], see
also [179].

The extension to the identification of mixed causal- anticausal systems is pro-
posed in [182]. Subspace algorithms based on frequency domain data are proposed
in [112,113], also see [137]. The identification using frequency domain data can be
preferred, since the number of data samples often can be reduced compared with
using time-domain data. This is especially true for systems with (many) widely
separated resonance modes (e.g., stiff systems and systems with a high number of
resonances). The extension of discrete time-domain methods to continuous time-
domain method has been given by [78]. More recently, also subspace algorithms
for the identification of a class of non-linear systems are proposed, see, e.g., [178].

One drawback of SMI methods in comparison with PEM is, that no (stochastic)
bound on the uncertainty of the parameter vector is provided. PEM methods
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provide an estimate of the covariance matrix of the error in the parameter-vector
[104], which can be used e.g., in robust controller design. In [14] a bootstrap method
has been proposed to estimate the uncertainty for state-space models obtained
by SMI. However, this approach is computationally complex and thus not very
suitable for high order acoustical and mechanical systems as will be considered
in this thesis. An alternative approach, proposed by Ljung in [103], to quantify
the model uncertainty is to identify a model of the model error. The advantage
of this approach is that it is independent of the identification algorithm or model
structure, and will also be used in this thesis.

State-space based controller design. Most (offline) optimal and robust con-
troller design methods are model based design methods, which are based on the
state-space model description, see, e.g., [85, 199]. The use of state-space mod-
els often enables to solve the controller design problem by solving (a set of)
Lyapunov equations, algebraic Riccati equations (ARE’s) and/or linear matrix
inequalities (LMI’s), which can (usually) be done by numerically reliable algo-
rithms. Often, control design methods based on polynomial model descriptions
(see, e.g, [2,91,92,163]) suffer to ill conditioned problems (polynomial spectral fac-
torizations and Diophantine equations) especially for MIMO high order systems
(cf. e.g. [196] on the condition of polynomials).

1.5 Contributions

The research strategy, which resulted in this thesis, was to obtain a cross-fertilization
between the results from the adaptive/recursive adaptive control and identification
together with results from the offline optimal and robust control design and iden-
tification. This resulted in various improvements of offline and adaptive controller
design, which are proposed in order to meet the objectives given in Section 1.2.

By looking forward, the contributions of this thesis are:

1. A method to design a nominal broadband feedforward controller by solving
a control-relevant identification problem using subspace model identification.
This controller (partly) compensates for model errors in the stochastic dis-
turbance model (Chapter 3).

2. Extension of this nominal design method to a probabilistic robust design
method which is robust for model errors in the secondary path. The design
method takes the likelihood of the model errors into account by means of a
stochastic model error model (Chapter 4).

3. The nominal and robust methods can be used in applications with feedback
by using the IMC approach (Chapter 3 and 4). For the robust design method,
it is shown that stability robustness of the closed loop is increased by using
a small gain theorem (Chapter 4).

4. By analysis of the optimal controller and the corresponding optimal residual
signal (Chapter 2 and 3) it is shown that, under a technical assumption,
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the optimal residual signal is uncorrelated with the regression vector of the
Filtered-U LMS algorithm. As a consequence, for global convergence of the
FuLMS algorithm it is not necessary to assume that perfect cancellation is
achievable as is assumed in [187] (Chapter 5).

5. A method to increase the robustness of the (preconditioned) FxLMS algo-
rithm by using a (stochastic) model error model of the model uncertainty in
the secondary path (Chapter 6). The robustification approach is based on
the probabilistic robust design method of Chapter 4.

6. A fast-array Kalman filter solution of the ANVC problem (Chapter 7):

• By reformulating the feedforward ANVC problem to a state-estimation
problem, the optimal minimum-variance estimate of the filter coefficients
has been obtained by using a Kalman filter. The effect of unknown
secondary-path initial state and measurement and process noise on the
secondary-path state has been explicitly taken into account.

• A fast-array implementation of the Kalman filter solution has been de-
rived, which reduces computational complexity from O((nw + ns)

2) to
O(23nw + 16ns) in the SISO case.

• It is shown that the Kalman filter solution is a generalization of the mod-
ified Filtered-RLS algorithm. In this way, conditions for the optimality
of the modified Filtered-RLS algorithm are derived. Additionally it has
been shown that in case exponential forgetting is used in the modified
Filtered-RLS algorithm, this exponential forgetting has to be taken into
account in the generation of the Filtered-reference signal.

7. Application of the input- and output-normal parameterizations to obtain
fast state-space filtering. The complexity of one state-space iteration is
O(2n(n + l) + 2(n + l)m), with l,m, n the number of outputs, the number
of inputs and state-dimension respectively, when using the state-space ma-
trices (A,B,C,D) and matrix-vector multiplications. Using the input- and
output-normal parameterization the complexity of one iteration is reduced
to O(6nm + 2(n + m)l) and O(6nl + 2(n + l)m) respectively, which enables
real-time implementation of high order state-space controllers.
In addition, using an input-normal parameterization of the secondary-path
model a fast implementation of the generation of the regression vector in the
multi-channel FxLMS algorithm has been obtained (Appendix C).

1.6 Outline of the thesis

The research strategy to obtain a cross-fertilization between offline (or blockwise)
controller design and model identification on one hand and online adaptive filter
design on the other hand, will also be visible in the structure of the thesis. The
thesis is organized in two parts: Part I on Offline/blockwise algorithms and Part
II on Online/sample-by-sample algorithms. Results on optimality and robustness
obtained in Part I are used in Part II to analyze the convergence of the FuLMS
algorithm and to propose a robust (preconditioned) FxLMS algorithm. Figure 1.9
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shows the dependencies among the chapters.

The outline of the thesis is given by:

Part I: Offline/blockwise algorithms consists of Chapter 2–4. Chapter 2
Optimal feedforward and feedback control introduces the notation, for-
mulates the feedforward and feedback broadband active control problem and
provides their H2 optimal solutions. This chapter is based on the Technical
Report [55].

Chapter 3 Nominal controller estimation builds further by developing
a controller design procedure in which the H2 optimal controller is estimated
by solving a control relevant identification problem. The procedure is first
derived based on Prediction Error identification with Output Error structure,
which provides better theoretical insight. Second, the procedure is derived
based on Subspace Model Identification, which provides a procedure which
is better for practical use (especially for MIMO high-order systems). The
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method is illustrated by experiments with an acoustical duct and a vibrating
plate system. Parts of this chapter were previously published in the confer-
ence papers [54,57,61], and in Control Engineering Practice [62].

Chapter 4 Robust controller estimation extents the nominal controller
estimation method to a robust controller estimation method, based on the
Cautious Wiener design philosophy. The chapter starts with discussing the
model uncertainty description. Then the robust feedforward controller, also
called the Cautious Wiener filter, is derived. By using IMC the method can
be applied for feedback systems too. The increased stability robustness is
discussed using a small gain theorem. The method is illustrated by experi-
ments with a vibrating plate system. Parts of this chapter were previously
published in the conference paper [60] and Control Engineering Practice [62].

Part II: Online/sample-by-sample algorithms consists of Chapter 5–7. The
results of Part I on offline/blockwise algorithms, provide also better under-
standing of online/sample-by-sample algorithms. This is illustrated by the
analysis of Chapter 2, which is the basis of the new convergence result of
FuLMS in Chapter 5 and by the robust design method of Chapter 4 which is
the basis of the robust (preconditioned) FxLMS algorithm in Chapter 6.

The main result of Chapter 5 Convergence analysis of Filtered-U LMS
is a relaxation of the conditions for global convergence of the FuLMS algo-
rithm. Based on the analysis in Chapter 2, it is shown that the optimal
residual signal is stochastically independent of the regression signal (under
some technical conditions) and thus the ODE analysis can be applied even in
case perfect cancellation is not achievable due to non-minimum phase zeros.
The analysis of Chapter 2 also suggests a preconditioning of the FuLMS al-
gorithm which, in general, improves the convergence rate considerably. This
preconditioning was earlier proposed by Elliott and Cook in [47] for the
FxLMS algorithm. The FuLMS convergence analysis and the preconditioned
FuLMS algorithm are illustrated by simulation on an academic example and
an acoustical duct system. Chapter 5 was previously published in Signal
Processing [58] in a slightly different presentation.

Chapter 6 Robust preconditioned Filtered-X LMS proposes a robusti-
tifaction of the ordinary FxLMS and the preconditioned FxLMS algorithm
proposed by Elliott and Cook. The robustification is based on the robust
design approach of Chapter 4 and mainly motivated by lack of robustness
of the preconditioned FxLMS algorithm due to the inversion of a minimum-
phase spectral factor and outer factor. The robust preconditioned FxLMS
algorithm is demonstrated on a acoustical duct system with delay variation
in the secondary path. Chapter 6 was previously published in IEEE Signal
Processing Letters [59].

In Chapter 7 A Fast-array Kalman filter solution another approach
to adaptive filtering has been taken in which the adaptive ANVC problem is
reformulated in a state-space estimation problem, which is solved by Kalman
filtering. The main result of this chapter is the derivation of a fast-array
implementation of this Kalman based algorithm. Also a comparison has
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been made with the modified Filtered-RLS algorithm and it is shown that
the Kalman based algorithm is a generalization of the modified Filtered-
RLS algorithm. The performance of the fast-array Kalman filter method
and the modified Filtered-RLS algorithm are compared by simulation on an
acoustical duct system. Chapter 7 has been submitted for publication in the
International Journal of Adaptive Control and Signal Processing [53].

Chapter 8 Conclusions concludes the thesis by evaluation of the contributions
of the thesis and recommendations for further research.

The outline of the appendices is given by:

Appendix A Proof of the Causal Wiener Theorem: This appendix contains
the proof of the Causal Wiener Theorem given in Chapter 2.

Appendix B The Causal Wiener state-space filter and relation with LQG:
This appendix contains the derivation of a state-space expression of the
Causal Wiener filter and relates the state-space solution to the LQG solution.
Also state-space expressions of the inner-outer and outer-inner factorizations
are given.

Appendix C Efficient state-space filtering using input- and output nor-
mal forms and application to FxLMS: Fast implementations of state-
space filters in input- and output-normal form has been derived. It is shown
how the filtering of the reference signal in the multiple-channel FxLMS algo-
rithm can be evaluated efficiently using the input-normal form.

Appendix D A frequency domain subspace algorithm for mixed causal,
anti-causal LTI systems: This appendix contains a paper on the identi-
fication of mixed causal, anti-causal systems using frequency domain data.
Using the result of this paper, the algorithms of Chapter 3 and 4 can be per-
formed by using frequency domain data as well. The paper was previously
published in the Proc. of SYSID 2003, [63].

Appendix E: Robust Decision Feedback Equalizer design via the solu-
tion of a regularized least squares problem: This appendix contains
a paper in which the design approach of Chapter 4 has been applied to the
direct identification of a robust decision feedback equalizer using a proba-
bilistic uncertainty model as in the Cautious Wiener approach. This chapter
illustrates the spin off of the research to telecommunication applications. The
chapter was previously published in the Proc. of the European Control Con-
ference 2001, [56].
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Part I

Offline/blockwise algorithms
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Chapter 2

Optimal feedforward and

feedback control

2.1 Introduction

This introductory chapter presents the basic control configurations considered in
ANVC and their H2 optimal solutions. The results of this chapter can be found in
different textbooks on control (see, e.g., [3,186,198]), or can be easily derived, and
will be used in the following chapters.

Three different building blocks in the design and analysis of ANVC are reviewed.
First, the pure feedforward control problem is considered, which is solved by the
Causal Wiener filter. We also analyze the effect of noise on the reference signal
and its dual case of control-effort weighting. The results obtained will play an
important role in the derivation of robust algorithms in the following chapters.

Second, the pure feedback control problem is considered. Using the Youla
parameterization of all stabilizing controllers this problem is reformulated into the
pure feedforward control problem.

Third, we consider the feedforward control problem where the reference signal
is distorted by the feedback control signal. This is the so called general feed-
forward/feedback control problem. The H2 optimal solution also follows from the
Youla-parameterization together with the Causal Wiener filter. We end the chapter
with comments on robust performance and robust stability.

This chapter is primarily based on the Technical Report [55].

2.2 Feedforward problem

2.2.1 Without measurement noise

Consider Figure 2.1 which illustrates the feedforward active control problem, with-
out measurement noise. Because we will focus on stationary broadband distur-
bances, we assume that the discrete-time signal s(k) ∈ Rms , generated by the
disturbance source, is a white and stationary random process with zero-mean and

31
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Figure 2.1: Block scheme of the multichannel feedforward active control problem,
with ms noise sources, mr reference, mu control and me error signals and no
measurement noise.

unit covariance

E

([
s(k)

1

]
sT (l)

)
=

[
Ims

δkl

01×ms

]
, (2.1)

with δkl the Kronecker delta function defined as

δkl =

{
1, ∀k = l

0, otherwise.

The signal s(k) propagates through the (discrete-time) primary path Ges(q
−1) ∈

RHme×ms
∞ , with RHme×ms

∞ the set of all asymptotically stable rational me ×ms

transfer function matrices with real coefficients1 and q−1 the unit shift back oper-
ator:

q−1s(k) = s(k − 1).

The anti-causal, unit-shift forward operator is denoted by q:

qs(k) = s(k + 1).

In the following, we will often skip the argument q−1 and will just write Ges when
referring to Ges(q

−1). The output of the primary path is the disturbance signal
d(k) ∈ Rme , which needs to be canceled. This is done by the secondary distur-
bance signal y(k) ∈ Rme , which is the output of the secondary path Geu(q−1) ∈
RHme×mu

∞ . The residual disturbance signal, also called error signal, is denoted by
e(k) ∈ Rme and given by

e(k) = d(k) + y(k). (2.2)

where

d(k) = Gess(k), (2.3)

y(k) = Geuu(k). (2.4)

1In active noise and vibration control application the systems to be controlled are asymptoti-
cally stable, therefore we restrict to asymptotically stable systems. Note, that most results also
generalize for unstable systems, though the generalization is not always straightforward.
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The control signal u(k) ∈ Rmu actuates Geu and is generated by the feedforward
controller W (q−1) ∈ RHmu×mr

∞ . The input to the controller is the reference signal
r(k) ∈ Rmr , which is the output of the detector path Grs(q

−1) ∈ RHmr×ms
∞

u(k) = Wr(k), (2.5)

r(k) = Grss(k). (2.6)

The idea of this feedforward control scheme, is that r(k) is an upstream signal
and d(k) a downstream signal (the ‘delay’ in Grs is smaller than the ‘delay’ in Ges).
Ideally, the feedforward controller W should be such that the transfer function
between s(k) and d(k) equals the negative of the transfer function between s(k)
and y(k)

Ges = −GeuWGrs. (2.7)

If Geu and Grs can be inverted, solving W from (2.7) yields

W = −G−1
eu GesG

−1
rs . (2.8)

However, W is constrained to be causal and stable, or else there will be no
physical implementation of W be possible, which may prevent (2.7) to be satisfied.
Furthermore, in the multiple channel case when e.g. me > mu or ms > mr it
is possible that (2.7) cannot be obtained due to under actuation or because the
reference channels do not contain all information of the disturbance channels. Let
us illustrate these causes, which prevent satisfying (2.7) for any causal W , by the
following two examples respectively.

Example 2.1 Consider the problem with

Ges = q−1 1− 1.1q−1

1− 0.9q−1
, Geu = q−1, Grs = q−1.

The only solution of W satisfying equation (2.7) is given by

W = −q
1− 1.1q−1

1− 0.9q−1
= q − 0.2− 0.18q−1 − 0.162q−2 − · · ·

which is not causal.

Example 2.2 Consider the problem with

Ges =

[
q−1

q−2

]
, Geu =

[
q−1

q−1

]
, Grs = 1

Then, to satisfy the first row of the constraint (2.7) we should choose W = −1, but
to satisfy the second row of this constraint we should choose W = −q−1. Thus it is
clear that there does not exist a W (no matter causal or not) such that (2.7) holds.

Hence, in some problems there does not exist a causal W , such that (2.7) holds
and thus perfect cancellation of d(k) such that e(k) = 0 can not be obtained. The
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examples are mathematical examples, but illustrate system characteristics which
do occur in practical active control problems.

Therefore, we will not search for causal W satisfying (2.7), but search for the
best causal W which minimizes the error signal e(k) according to a specific criterion.
The mean squared error (MSE) of the residual disturbance e(k) given by

trE
(
e(k)eT (k)

)
(2.9)

is a very suitable criterion, because it is a measure of the power of the remaining
disturbance. Therefore, it is widely used in ANVC applications.

Because the signal s(k) from the disturbance source is a white noise process
with unit covariance, the MSE value of e(k) can also be written in terms of the H2

norm of Ges −GeuWGrs (using Parseval’s Theorem), i.e.,

trE
(
e(k)eT (k)

)
= ||Ges + GeuWGrs||22

where the H2-norm is defined in the next definition.

Definition 2.1 (H2-norm) The H2-norm of the transfer function matrix G(q−1) ∈
RHmx×my

∞ is defined as

||G(q−1)||2 ,

√√√√√ 1

2π
tr

π∫

−π

G(ejω)G(ejω)∗dω (2.10)

where (.)∗ denotes the complex conjugate transpose.

Using the H2-norm criterion the feedforward controller design problem is formu-
lated as follows.

Problem 2.1 (H2 feedforward controller design problem) Given Ges ∈
RHme×ms

∞ , Geu ∈ RHme×mu
∞ , Grs ∈ RHmr×ms

∞ determine W ∈ RHmu×mr
∞ such

that

W = arg min
W∈RHmu×mr

∞

J(W) (2.11)

with the cost-function J(W) defined by

J(W) = ||Ges + GeuWGrs||2. (2.12)

The following subsection will give the solution to this problem.

2.2.2 Causal Wiener filter

To solve Problem 2.1 we will use a factorization approach (see, e.g., [186]), which
provides some nice interpretations. Before stating the theorem which provides the
solution, we need to introduce the causality and anti-causality operators and the
inner-outer and outer-inner (or co-inner-outer) factorizations. We have already
introduced the set RHmx×my

∞ of asymptotically stable transfer function matrices.
Now we will introduce the more general set RHmx×my ⊃ RHmx×my

∞ of all mx×my
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transfer function matrices with real coefficients and excluding singularities on the
unit-circle. A singularity on the unit-circle is a systems with poles on the unit-
circle in the complex-plane. Let us directly introduce another subset of RHmx×my ,
which is denoted as RHmx×my

p and contains all proper transfer function matrices in

RHmx×my . A transfer function is said to be proper, if the order of the denominator
polynomial is greater or equal to the order of the numerator polynomial.

It can be proven that for any G(q−1) ∈ RHmx×my , there exists a (convergent)
Laurent series given by (see, e.g., [143])

G(q−1) =

∞∑

i=−∞
Giq

−i, Gi ∈ Rmx×my . (2.13)

Definition 2.2 (Causality and anti-causality operator) Let the Laurent se-
ries of G(q−1) ∈ RHmx×my be given by (2.13), then the causal part and the anti-
causal part of G are defined by

[G]+ ,

∞∑

i=0

Giq
−i, causal part, (2.14)

[G]− ,

−1∑

i=−∞
Giq

−i, anti-causal part (2.15)

respectively, with Gi ∈ Rmx×my .

Note, that our definition of anti-causality is strict in the sense that the term G0 is
excluded. It is straightforward to verify that

G = [G]+ + [G]−.

Furthermore, it can be shown that [G]+ ∈ RHmx×my
∞ and [G]− ∈

RHmx×my/RHmx×my
∞ .

Lemma 2.1 (Inner-outer factorization [186]) Let G ∈ RHmx×my
∞ . Then G

has an inner-outer factorization

G = GiGo, (2.16)

with Gi ∈ RHmx×m
∞ is an isometry (G∗

i Gi = Im) and the outer factor
Go ∈ RHm×my

∞ has a stable right inverse, with m ≤ min(mx,my). If G(q−1) does
not loose rank ∀|q| = 1 (G has no zeros on the unit-circle), than Go has an asymp-
totically stable right inverse. Furthermore, there exists a G⊥

i ∈ RHmx×mx−m
∞ such

that [Gi G⊥
i ] is unitary ([Gi G⊥

i ]∗[Gi G⊥
i ] = [Gi G⊥

i ][Gi G⊥
i ]∗ = Imx

).

Lemma 2.2 (Outer-inner factorization [186]) Let G ∈ RHmx×my
∞ . Then G

has an outer-inner factorization

G = GcoGci, (2.17)

with Gci ∈ RHm×my
∞ is a co-isometry (GciG

∗
ci = Im) and the co-outer factor

Gco ∈ RHmx×m
∞ has a stable left inverse, with m ≤ min(mx,my). If G(q−1)
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does not loose rank ∀|q| = 1 (G has no zeros on the unit-circle), than Gco has an
asymptotically stable left inverse. Furthermore, there exists a G⊥

ci ∈ RHmy−m×my
∞

such that [G∗
ci G⊥∗

ci ]∗ is unitary ([G∗
ci G⊥∗

ci ][G∗
ci G⊥∗

ci ]∗ = [G∗
ci G⊥∗

ci ]∗[G∗
ci G⊥∗

ci ] =
Imy

).

Note, that due to the isometry and co-isometry properties of Gi and Gci respec-
tively, we have

G∗G = G∗
oGo,

GG∗ = GcoG
∗
co.

Appendix B shows how the inner-outer and the outer-inner factorization of G can
be calculated given a state-space realization of G.

Because the right and left outer factors have a stable right and left inverse
respectively, they are said to be minimum phase. Hence, Gco is a minimum phase
spectral factor of GG∗.

Because G∗
i Gi = Im, G∗

i is a left-inverse of Gi. On the other side, because
GciG

∗
ci = Im, G∗

ci is a right-inverse of Gci.
The basic idea behind the inner-outer and outer-inner factorization is to factor-

ize dynamic systems in a part which is stably (causally) invertible (the (co-)outer
factor) and a remaining part (the (co-)inner factor) which only yields a phase shift
(e.g. due to delays) and thus does not affect the energy of signals.

Example 2.3 Let the system G be given by

G(q−1) =
q−1(1− 1.1q−1)

1− 0.9q−1

then the inner and outer factors are given by

Gi(q
−1) = q−1 1

1.1

1− 1.1q−1

1− 1
1.1q−1

, Go(q
−1) = 1.1

1− 1
1.1q−1

1− 0.9q−1

respectively.

Note, that for SISO systems the inner and outer factors are equal to the co-inner
and the co-outer factors respectively.

The following theorem gives the solution to Problem 2.1.

Theorem 2.1 (Causal Wiener filter) Given Ges(q
−1) ∈ RHme×ms

∞ ,
Geu(q−1) ∈ RHme×mu

∞ , Grs(q
−1) ∈ RHmr×ms

∞ . Assume that Geu(q−1) and
Grs(q

−1) do not loose rank ∀|q| = 1. Then, let

Geu = Geu,iGeu,o (2.18)

Grs = Grs,coGrs,ci (2.19)

be the inner-outer and outer-inner factorization of Geu and Grs respectively and
G†

eu,o a right-inverse of Geu,o and G†
rs,co a left-inverse of Grs,co. Let G⊥

eu,i and

G⊥
rs,ci be such that [Geu,i G⊥

eu,i] and [G∗
rs,ci G⊥∗

rs,ci]
∗ are unitary. Then

W = −G†
eu,o

[
G∗

eu,iGesG
∗
rs,ci

]
+

G†
rs,co (2.20)
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minimizes

||Ges + GeuWGrs||2, subject to W ∈ RHmu×mr
∞ (2.21)

and its minimum value is given by

||Ges + GeuWGrs||2 =√
||GesG⊥∗

rs,ci||22 + ||G⊥∗
eu,iGesG∗

rs,ci||22 + ||
[
G∗

eu,iGesG∗
rs,ci

]
− ||

2
2

(2.22)

Proof: The proof is given by [186, Section 6.2]. We included the proof in a slightly
different presentation in Appendix A. �

Appendix B shows how the Causal Wiener filter (2.20) can be calculated given
state-space realizations of Ges, Geu and Grs.

We observe, that in case Geu,i = Imu
and Grs,ci = Imr

—which means that Geu

and Grs do not have non-minimum phase zeros— the Causal Wiener filter (2.20)
is given by

W = −G†
euGesG

†
rs (2.23)

The expression is called the Wiener filter (without the preposition Causal) and
equals (2.8) in case Geu and Grs are square.

Even in case Geu,i 6= Imu
or Grs,ci 6= Imr

but

G∗
eu,iGesG

∗
rs,ci = [G∗

eu,iGesG
∗
rs,ci]+ (2.24)

the Causal Wiener filter equation (2.20) simplifies to the Wiener equation (2.23).
When equation (2.24) holds, non-minimum phase zeros in Geu and Grs cancel
against non-minimum phase zeros in Ges.

Example 2.4 For example, let

Ges = q−p, Geu = q−2, Grs = q−1

and thus, the inverses of Geu and Grs are not causal. Now, we have

Geu,o = 1, Geu,i = q−2, Grs,co = 1, Grs,ci = q−1

and thus
G∗

eu,iGesG
∗
rs,ci = q2q−pq1 = q3−p.

So for p ≥ 3 we have

G∗
eu,iGesG

∗
rs,ci = [G∗

eu,iGesG
∗
rs,ci]+ = q3−p

and the Causal Wiener (2.20) and the Wiener filter (2.23) are equal and given by

W = −q3−p.

However, for p < 3 we have

[G∗
eu,iGesG

∗
rs,ci]+ = 0

Hence, the Causal Wiener filter (2.20) is given by

W = 0

and is different from the Wiener filter −q3−p, which is anti-causal for p < 3.
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Further, we note that in case mr > ms the left-inverse of Grs,co ∈ RHmr×mrs
∞ ,

with mrs ≤ min(mr,ms), is not unique. Analogue, in case that mu > me the
right-inverse of Geu,o ∈ RHmeu×mu

∞ , with meu ≤ min(me,mu), is not unique. This
non-uniqueness can be exploited, e.g., to minimize the control-effort.

In the case that mr < ms it may happen —though not necessarily— that G⊥
rs,ci

is non-zero, and thus the first term under the square-root in (2.22) contribute to
the minimum value of the cost-function if also GesG

⊥∗
rs,ci is non-zero. The inter-

pretation is, that there is noise which contributes to the disturbance d(k), but are
not measured, or observed, at the reference sensors and thus not contained in r(k).
This is related to the concept of the concept of unobservable modes of the system,
as is known in standard control literature [199].

Analogue, in the case that mu < me, it may happen —though not necessarily—
that G⊥

eu,i is non-zero, and thus the second term under the square-root in (2.22)

contributes to the minimum value of the cost-function if also G⊥∗
eu,iGesG

∗
rs,ci is

non-zero. The interpretation is, that the actuator configuration (the number of
actuators and their positioning) is too limited to counteract all disturbance channels
in d(k). This is related to the concept of uncontrollable modes of the system in
standard control literature [199].

The first and second term under the square-root in (2.22) are related to the
geometry of the active control system, the third term is related to the restriction
that W (q−1) should be causal. The third term is determined by delays and non-
minimum phase zeros in Grs and Geu, which contribute to the anti-causal terms
in G∗

rs,ci and G∗
eu,i.

The error signal e(k) obtained by using the Causal Wiener filter W given by
(2.20) is given by

e(k) = (Ges + GeuWGrs)s(k),

=
(
Geu,i[G

∗
eu,iGesG

∗
rs,ci]−Grs,ci+

+ Geu,iG
∗
eu,iGesG

⊥∗
rs,ciG

⊥
rs,ci + G⊥

eu,iG
⊥∗
eu,iGes

)
s(k) (2.25)

where we have used

Ges =
[

Geu,i G⊥
eu,i

]
[

G∗
eu,i

G⊥∗
eu,i

]

︸ ︷︷ ︸
=Ime

Ges

[
G∗

rs,ci G⊥∗
rs,ci

]
[

Grs,ci

G⊥
rs,ci

]

︸ ︷︷ ︸
=Ims

,

and
G∗

eu,iGesG
∗
rs,ci − [G∗

eu,iGesG
∗
rs,ci]+ = [G∗

eu,iGesG
∗
rs,ci]−.

Let us consider the examples of the previous section again.

Example 2.5 Consider the system of Example 2.1, then the optimal causal filter
W according to Theorem 2.1 is given by

W =
0.2

1− 0.9q−1
.

Furthermore, the contributions to the cost-function are

||GesG
⊥∗
rs,ci||22 = 0, ||G⊥∗

eu,iGesG
∗
rs,ei||22 = 0, ||[G∗

eu,iGesG
∗
rs,ci]−||22 = 1,
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Figure 2.2: Block scheme of the multichannel feedforward active control problem,
with ms noise sources, mr reference, mu control and me error signals with mea-
surement noise.

such that

||Ges + GeuWGrs||2 = 1.

Note, that ||Ges||2 ≈ 1.1 and because ||Ges + GeuWGrs||2 < ||Ges||2 part of the
disturbance is suppressed, but perfect cancellation is not achievable since ||Ges +
GeuWGrs||2 > 0.

Example 2.6 Consider the system of Example 2.2, then the optimal causal filter
W according to Theorem 2.1 is given by

W = −0.5− 0.5q−1.

Furthermore, the contributions to the cost-function are

||GesG
⊥∗
rs,ci||22 = 0, ||G⊥∗

eu,iGesG
∗
rs,ei||22 = 1, ||[G∗

eu,iGesG
∗
rs,ci]−||22 = 0,

such that

||Ges + GeuWGrs||2 = 1.

Note, that ||Ges||2 =
√

2 and because ||Ges + GeuWGrs||2 < ||Ges||2 part of the
disturbance is suppressed, but perfect cancellation is not achievable since ||Ges +
GeuWGrs||2 > 0.

Theorem 2.1 solves the feedforward optimal control problem without measurement
noise of Problem 2.1, but we will use this theorem also in the following subsections
to solve other control problems.

2.2.3 With measurement noise

Consider Figure 2.2, which illustrates the feedforward control problem with mea-
surement noise v(k) ∈ Rmv . We assume, that v(k), like s(k), is a stationary
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zero-mean white-noise signal which is independent of s(k), and such that

E







s(k)

v(k)

1



[

s(l)

v(l)

]T

 =




Ims
δkl 0

0 Imv
δkl

0 0


 . (2.26)

The transfer-function matrices Hrv ∈ RHmr×mv
∞ and Hev ∈ RHme×mv

∞ are noise
shaping transfer-functions, which allow to consider various choices of measurement
noise. For example, in case there is no noise on the reference signal r(k), set
Hrv = 0; for the case the noise on r(k) and e(k) is independent, set

Hrv =
[

H1
rv 0mr×mv2

]
, Hev =

[
0me×mv1

H2
ev

]
, (2.27)

with H1
rv ∈ RHmr×mv1

∞ and H2
ev ∈ RHme×mv2

∞ with mv1 + mv2 = mv.
From Figure 2.2, it is clear that the measurement noise v(k) enters the system in

exactly the same way as the disturbance source signal s(k). Therefore, by making
the following substitutions

s(k)←
[

s(k)

v(k)

]
, (2.28)

Grs ←
[

Grs Hrv

]
, (2.29)

Ges ←
[

Ges Hev

]
, (2.30)

the optimal feedforward control problem without measurement noise, Problem 2.1,
equals the optimal feedforward control problem with measurement noise.

Using Theorem 2.1 together with the substitutions (2.28)-(2.30) the optimal
feedforward controller for the case with measurement noise, is given by

W = −G†
eu,o

[
G∗

eu,iG
aug
es Gaug∗

rs,ci

]
+

Gaug†
rs,co (2.31)

with
Gaug

es =
[

Ges Hev

]
, Gaug

rs =
[

Grs Hrv

]
. (2.32)

and Gaug
rs,coG

aug
rs,ci the outer-inner factorization of Gaug

rs .
In the case of independent measurement noise on r(k) and e(k), the expression

(2.31) can be simplified in a way that the effect of the noise becomes more visible
(note, that in the case of dependent measurement noise, the measurement noise can
be considered as part of the disturbance). Let Hrv and Hev be as in (2.27) and
Gaug

rs and Gaug
es as in (2.32). Then, the outer-inner factorization of Gaug

rs is given
by [

Grs H1
rv 0mr×mv2

]
= Gaug

rs,co

[
G1aug

rs,ci G2aug
rs,ci 0mr×mv2

]
.

Using (2.31), yields

W = −G†
eu,o

[
G∗

eu,iGesG
1aug∗
rs,ci

]
+

Gaug†
rs,co (2.33)

Note, that the solution is independent of H2
ev, which means that measurement noise

on e(k) which is not correlated with the reference signal r(k) cannot be suppressed,
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as is intuitive. Furthermore, the structure of equation (2.33) is similar to the Causal
Wiener filter (2.20) for the no measurement noise case, except for Grs,ci and Grs,co

which are replaced by G1aug
rs,ci and Gaug

rs,co respectively. We still have

Grs = Gaug
rs,coG

1aug
rs,ci

but now, this factorization is not an outer-inner factorization of Grs but is deter-
mined by the outer-inner factorization of Gaug

rs . Using the definition of Gaug
rs in

(2.32), and the outer-inner factorization lemma, Lemma 2.2, we have

Gaug
rs,coG

aug∗
rs,co = GrsG

∗
rs + H1

rvH1∗
rv .

Hence, the ‘magnitude’ of Gaug
rs,co(e

−jω) is increased, especially at the frequencies

ω where the magnitude of H1
rv(e−jω) is ‘large’. Since, the left-inverse of Gaug

rs,co is
a factor of the Causal Wiener filter (2.33), the control-action is reduced at those
frequencies ω where H1

rv(e−jω) cannot be neglected. This is also intuitive, reducing
the magnitude of W will reduce the contribution of the noise on r(k) to the residual
signal e(k) and thus also to the cost-function (2.12).

2.2.4 With control effort weighting

In many practical problems, it is useful to include a control effort weighting in
the cost-function, to increase robustness and/or prevent actuator saturation. Let
us again, consider the feedforward control problem without measurement noise,
illustrated by Figure 2.1. The cost-function we want to minimize now is given by

J(W) = trE
(
e(k)eT (k)

)
+ trE

(
ũ(k)ũT (k)

)
(2.34)

where the filtered control signal ũ(k) is given by

ũ(k) = G̃euu(k). (2.35)

and G̃eu ∈ RHmu×mu
∞ a user chosen filter which gives the freedom to restrict the

control signal more at specific frequencies. Note, that trade-off between minimizing
the first and the second term in (2.34) is determined by the magnitude/gain of G̃eu.

Using Parseval’s theorem, we can write (2.34) as

J(W) = ||Ges + GeuWGrs||22 + ||G̃euWGrs||22, (2.36)

= ||
[

Ges

0mu×mu

]
+

[
Geu

G̃eu

]
WGrs||22, (2.37)

= ||Gaug
es + Gaug

eu WGrs||22. (2.38)

with

Gaug
es =

[
Ges

0mu×mu

]
, Gaug

eu =

[
Geu

G̃eu

]
.

The step from (2.36) to (2.37) can be verified using Definition 2.1 which defines
the H2-norm. Equation (2.37) is in the form of the cost-function (2.21) minimized
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in the Causal Wiener filter theorem. Therefore, we directly can write the solution
minimizing the cost-function (2.37) as:

W = −Gaug†
eu,o

[
Gaug∗

eu,i Gaug
es G∗

rs,ci

]
+

G†
rs,co, (2.39)

where
Gaug

eu = Gaug
eu,iG

aug
eu,o

the inner-outer factorization of Gaug
eu .

Using the definition of Gaug
eu , we can write

[
Geu

G̃eu

]
=

[
G1aug

eu,i

G2aug
eu,i

]
Gaug

eu,o.

Together with the definition of Gaug
es , the expression of the Causal Wiener filter

(2.39) can be simplified to

W = −Gaug†
eu,o

[
G1aug

eu,i GesG
∗
rs,ci

]
+

G†
rs,co, (2.40)

which structure is similar to the Causal Wiener filter (2.20) for the case of no
control effort weighting, except for Geu,i and Geu,o which are replaced by G1aug

eu,i

and Gaug
eu,o respectively. We still have

Geu = G1aug
eu,i Gaug

eu,o

but now, this factorization is not an inner-outer factorization of Geu but determined
by the inner-outer factorization of Gaug

eu . Using the definition of Gaug
eu , and the

inner-outer factorization lemma, Lemma 2.1, we have

Gaug∗
eu,o Gaug

eu,o = G∗
euGeu + G̃∗

euG̃eu.

This adjustment of the Causal Wiener filter in Theorem 2.1 is the dual form of the
adjustment of the Causal Wiener in case of measurement noise on the reference
signal in the previous subsection, Section 2.2.3.

Analogue to the discussion at the end of Subsection 2.2.3 we can conclude that
the magnitude of the Causal-Wiener filter is reduced especially at the frequencies ω
where the magnitude of G̃eu(e−jω) is ‘large’. This is of course also what is obtained
by control-effort weighting.

These adjustments will also play an important role in the following chapters, in
the development of robust control algorithms.

2.3 Feedback problem

Consider Figure 2.3 which illustrates the active control problem for feedback sys-
tems. Note, that the measurement noise v(k) enters the system similar as s(k),
and thus v(k) can be included in s(k), as will be done below by augmenting Ges

with Hev.
In feedback systems, no reference signal r(k) is available, and the control action

u(k) should be determined fully from the residual signal e(k). The controller is
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Figure 2.3: Block scheme of the multichannel feedback active control problem, with
ms noise sources, mu control and me error signals with measurement noise.
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Figure 2.4: Block scheme of the closed-loop system for the definition of internal
stability.

now indicated by C(q−1) ∈ RHmu×me
p and is not restricted to be asymptotically

stable (RHmx×my
p is the set of all proper rational transfer-functions matrices of

size mx×my with real coefficients). However, the closed-loop should be internally
stable, which means that for bounded s(k) and v(k), all signals in Figure 2.3 should
remain bounded. The formal definition of internal stability is given by the following
definition using the closed-loop of Figure 2.4.

Definition 2.3 Consider the feedback control loop of Figure 2.4 with controller
C ∈ RHmu×me

p applied to a plant Geu ∈ RHme×mu
p , then the feedback control loop

is internally stable, if the system
[

e1(k)

e2(k)

]
=

[
Ime

−Geu

−C Imu

][
w1(k)

w2(k)

]

is bounded-input bounded-output (BIBO) stable in the l2 sense.

Comparing Figure 2.3 and 2.4, we infer that the closed-loop in Figure 2.3 is a special
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Figure 2.5: Block scheme of the Youla parameterization for stable Geu(q−1) with
Q(q−1) ∈ RHmu×me

∞ the Youla parameter, also denoted by W (q−1).

case (i.e. without w2(k)) of the closed-loop in Figure 2.4. Thus, if C and Geu are
such that the closed-loop is of Figure 2.4 is internally stable, the closed-loop of
Figure 2.3 is also internally stable.

The Youla parameterization [193, 194] provides a parameterization of all sta-
bilizing controllers. For stable Geu, the Youla parameterization of all stabilizing
controllers is given by

C = (Imu
+ QGeu)−1Q, ∀Q ∈ RHmu×me

∞ (2.41)

with W ∈ RHmu×me
∞ the so-called Youla parameter. Figure 2.5 illustrates the

structure of the controller (2.41). From this figure, we directly infer that the

influence of u(k) on e(k) is subtracted, resulting in d̂(k) which is independent of
u(k):

d̂(k) = Gess(k) + Hevv(k).

Hence, the feedback problem is reformulated into a feedforward control problem
and therefore we will design Q(q−1 by solving a feedforward control problem. Since
Q(q−1) represents a feedforward controller, we will write W (q−1) instead of Q(q−1)
in the sequal (so Q(q−1) = W (q−1)). This strategy, to reformulate the feedback
problem in a feedforward problem, is well known as the so-called Internal Model
Control approach, see, e.g., [120]. Now, the residual signal e(k) can be rewritten
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in terms of W (which appears linearly!) as follows

e(k) =
([

Ges Hev

]
+ GeuW

[
Ges Hev

])
[

s(k)

v(k)

]
(2.42)

The resulting optimization problem in W is to minimize

trE
(
e(k)eT (k)

)
=
∣∣|
[

Ges Hev

]
+ GeuW

[
Ges Hev

]∣∣ |22 (2.43)

= ||Gaug
es + GeuWGaug

es ||22 (2.44)

with

Gaug
es =

[
Ges Hev

]
.

subject to W ∈ RHmu×me
∞ . Again Theorem 2.1 provides the solution to this

problem, which is given by

W = −G†
eu,o

[
G∗

eu,iG
aug
es Gaug∗

es,ci

]
+

Gaug†
es,co,

= −G†
eu,o

[
G∗

eu,iG
aug
es,co

]
+

Gaug†
es,co. (2.45)

with

Gaug
es = Gaug

es,coG
aug
es,ci

the outer-inner factorization of Gaug
es . Hence, the optimal internally stabilizing

feedback controller is given by (2.41) with W given by (2.45). Note, that W only
depends on the co-outer factor (i.e. the minimum-phase spectral factor) of Gaug

es ,
and thus delays in Gaug

es will not affect W .

Furthermore, note that in case Gaug
es,co = Ime

and Geu contains one sample pure
delay (e.g. due to discretization, which is always present in practical active control
systems), we have G∗

eu,i is strictly anti-causal and [G∗
eu,iG

aug
es,co]+ = [G∗

eu,i]+ = 0.
Hence, in this case, we have W = 0mu×me

and thus C = 0mu×me
, which means

that the residual signal e(k) cannot be reduced (but only increased) by any control
action. This is also intuitive, since Gaug

es = Ime
means that the disturbance is

white, and no information from the disturbance at k can be used to counteract the
disturbance at k + 1.

2.4 General feedforward/feedback problem

We are now ready to solve the general feedforward/feedback problem illustrated
by Figure 2.6. The plant to be controlled is described by

e(k) = Gess(k) + Geuu(k) + Hevv(k), (2.46)

r(k) = Grss(k) + Gruu(k) + Hrvv(k), (2.47)

and the control-law by

u(k) = Cr(k). (2.48)
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Figure 2.6: Block scheme of the general multichannel feedforward/feedback active
control problem, with ms noise sources, mr reference, mu control and me error
signals with measurement noise.

As in Section 2.3, we will use the Youla parameterization to parameterize all in-
ternally stabilizing controllers by

C = (Imu
+ WGru)−1W, ∀W ∈ RHmu×mr

∞ . (2.49)

With this controller structure, the control problem is reformulated in a feedforward
control problem which is solved by Theorem 2.1. To see this, note that the feedback
of Gru is canceled by (2.49), which yields

e(k) =
([

Ges Hev

]
+ GeuW

[
Grs Hrv

])
[

s(k)

v(k)

]
.

Hence, the trace of the covariance of e(k) is given by

trE
(
e(k)eT (k)

)
= ||Gaug

es + GeuWGaug
rs ||22, (2.50)

where
Gaug

es =
[

Ges Hev

]
, Gaug

rs =
[

Grs Hrv

]
.

Hence, minimizing (2.50) subject to W ∈ RHmu×me
∞ is solved by Theorem 2.1 and

its solution is given by

W = −G†
eu,o[G

∗
eu,iG

aug
es Gaug∗

rs,ci ]+Gaug†
rs,co (2.51)

with
Gaug

rs = Gaug
rs,coG

aug
rs,ci,

the outer-inner factorization of Gaug
rs .
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Using the expression for the minimum value of the cost-function (2.22) in The-
orem 2.1, we have for W given by (2.51)

‖Gaug
es + GeuWGaug

rs ‖22 =

‖Gaug
es Gaug⊥∗

rs,ci ‖22 + ‖G⊥∗
eu,iG

aug
es Gaug∗

rs,ci‖22 + ‖[Gaug∗
eu,i Gaug

es Gaug∗
rs,ci ]−‖22.

Note, that this value does not depend on Gru.

2.5 State-space LQG solution

In the previous sections, we have solved various feedforward and feedback con-
trol problems using the Causal Wiener filter Theorem 2.1 and the Internal Model
Control approach. The obtained expressions for the optimal controllers can be
evaluated using models given in, e.g., transfer function or state-space notation.
See Appendix B, which derives state-space expressions for the controllers.

However, to derive a state-space expression for the controllers, another approach
is often followed in literature, see, e.g., [3, 24, 85], via Kalman filtering and Linear
Quadratic (LQ) control. Let us consider, the general feedforward/feedback problem
of Section 2.4, with no measurement noise, v(k) = 0 (or, the measurement noise
v(k) is contained in s(k)). Furthermore, let us assume a state-space realization of

the system

[
Ges Geu

Grs Gru

]
is given by




x(k + 1)

e(k)

r(k)


 =




A Bs Bu

Ce Des Deu

Cr Drs 0mr×mu







x(k)

s(k)

u(k)


 (2.52)

with x(k) ∈ Rn the state, n the system order and A, Bs, Bu, Ce, Cr, Des, Deu and
Drs the state-space matrices, which are real-valued and of appropriate dimensions.

Then, the state-space controller minimizing the cost-function (2.12) is given by
linear quadratic Gaussian (LQG) controller given by the following theorem.

Theorem 2.2 (LQG control [25]) Given the state-space description (2.52).
Further let

• the pair (Cr, A) be detectable and the pair (A,Bu) be stabilizable;

• Rrs = DrsD
T
rs > 0, Reu = DT

euDeu > 0;

• the matrices [
A− λI Bu

Ce Deu

]
,

[
A− λI Bs

Cr Drs

]

have full rank for all complex λ such that |λ| = 12.

2This condition is equivalent to the condition in Theorem 2.1 that Geu(q−1) and Grs(q−1) do
not loose rank for all |q| = 1
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For ease of notation, we also define

Qs = BsB
T
s , Qe = CT

e Ce, Srs = BsD
T
rs, and Seu = CT

e Deu.

Then, there exist unique Prs = PT
rs > 0 and Peu = PT

eu > 0 which are stabilizing
solutions to the following Riccati equations

Prs = APrsA
T − (APrsC

T
r + Srs)(CrPrsC

T
r + Rrs)

−1(APrsC
T
r + Srs)

T + Qs,

Peu = AT PeuA− (AT PeuBu + Seu)(BT
u PeuBu + Reu)−1(AT PeuBu + Seu)T + Qe.

Let

Feu = (BT
u PeuBu + Reu)−1(BT

u PeuA + ST
eu), (2.53)

F o
eu = (BT

u PeuBu + Reu)−1(BT
u PeuBs + DT

euDes), (2.54)

and

Krs = (APrsC
T
r + Srs)(CrPrsC

T
r + Rrs)

−1, (2.55)

Ko
rs = (FeuPrsC

T
r + F o

euDT
rs)(CrPrsC

T
r + Rrs)

−1, (2.56)

Then, the optimal state-space controller, which minimizes (2.12) is given by

[
x̂(k + 1|k)

u(k)

]
=

[
A + BuKo

rsCr −BuFeu −KrsCr BuKo
rs −Krs

Feu −Ko
rsCr −Ko

rs

]

·
[

x̂(k|k − 1)

y(k)

]
(2.57)

with x̂(k|k − 1) the estimate of x(k) given the measurements y(i), i ≤ k − 1.

Proof: For the proof see [25] and the technical report [26]. �

In Appendix B we proof that this controller is equivalent to the controller obtained
in Section 2.4 by the Causal Wiener filter and IMC.

2.6 Robustness problem

The controllers of the previous sections are designed based on the underlying as-
sumption that the model equals the system. This assumption is known as the
certainty equivalence principle. In practice, this assumption is never satisfied, be-
cause the model is always an approximation of the plant. Therefore, the controller
which is designed to be optimal for the model, will (usually) not be optimal for the
plant. In case of feedback systems, the closed-loop may even be unstable.

Basically, there are two approaches, which may also be combined, to deal with
this problem:

• Control-relevant identification: the control cost-function is minimized during
model identification;
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• Robust controller design based on model uncertainty description.

Control-relevant identification reduces the effect of model errors, since the model
necessary for controller design is accurately estimated only at the frequency bands
where the controller should be active. This approach has been taken in Chapter 3.

The other approach is to design the controller such that it is robust (in the sense
of performance and stability robustness) for model uncertainty. This approach has
been taken in Chapter 4.
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Chapter 3

Nominal controller

estimation

3.1 Introduction

In the previous chapter, the design equations for the H2 optimal feedforward and
feedback controllers have been given. In this chapter, we consider the question
to estimate these optimal controllers given measured data, which is the nominal
controller estimation problem.

The standard approach is to estimate a full model of the system, i.e. estimate
Ges, Geu, Grs, Gru and Hev, Hrv, and use these models in the optimal controller
expressions. The idea is that, a ‘good’ approximation of the models also yields a
‘good’ approximation of the controller. However, this is not necessarily the case,
since the optimal controller expression may be very sensitive to (particular) model
errors.

Another approach to calculate the controller, is by solving a control-relevant
identification problem using the measured-data. A control-relevant identification
problem is an identification problem where the cost function to be minimized for
estimating the parameters, equals the cost function to be minimized by the con-
troller. Hence, solving a control-relevant identification problem to determine the
controller or a factor of the controller, explicitly minimizes the control cost func-
tion and thus usually gives better performance than the standard model based
approach.

Control-relevant identification problems often arise in closed-loop identification
problems, for example in the famous windsurfer approach proposed in [96] (also
see [33]). Here, we will propose an open-loop (feedforward) control-relevant identi-
fication method to estimate the Causal Wiener filter.

The chapter is organized as follows. Section 3.2 discusses the standard model
based controller design procedure. Section 3.3 briefly discusses the choice of pre-
diction error or subspace model identification methods. Section 3.4 discusses two
modeling approaches, a one step and a two step approach. In the two step approach
two sets of measurements are collected, one with the disturbance signal turned off
and the control signal turned on, and one the other way around. Then, the main

51
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contribution of the chapter is given in Section 3.5 which proposes a control-relevant
identification approach to estimate the H2 optimal controller. The method has been
developed for PEM as well as SMI, which differs slightly as will be explained in the
sequel. Section 3.6 illustrates the estimation of the controller by experiments with
an 1-dimensional acoustical duct and a 4× 4 vibrating plate system.

The content of this chapter was published before at the ISMA conference 2002
in Leuven, [61], and was also part of the publication in Control Engineering Practice
[62].

3.2 Standard model based controller design

Consider the basic feedforward control problem of Section 2.2.1 to minimize the
cost-function

J(W ) = trE
(
e(k)eT (k)

)
= ||Ges + GeuWGrs||22. (3.1)

This problem was solved by the Causal Wiener filter

W = −G†
eu,o[G

∗
eu,iGesG

∗
rs,ci]+G†

rs,co (3.2)

in Theorem 2.1.

Using identification methods implemented in e.g. the Matlab Identification
Toolbox [105], the Subspace Model Identification toolbox [77] or the SLICOT soft-
ware package [159], models of Ges, Grs and Geu can be identified, which are denoted

by Ĝes, Ĝrs and Ĝeu respectively. Then the Causal Wiener filter can be estimated
by replacing the systems by their estimates, which yields

Ŵ = − Ĝ†
eu,o[Ĝ

∗
eu,iĜesĜ

∗
rs,ci]+Ĝ†

rs,co. (3.3)

In this step, it is assumed that the models are accurate and provide an exact
description of the true systems, which is called the principle of certainty equivalence.
However, this assumption is easily violated, due to

• Measurement noise;

• The use of a finite number of samples (such that measurement noise does not
vanish by averaging);

• Unmodeled dynamics (the true system is not contained in the model set);

• Nonlinear behavior of the system (e.g. saturation);

• Variations in the system (e.g. due to temperature variations);

• Sub-optimality of the identification method (e.g. the identification of an Out-
put Error model is a non-linear optimization problem and can only be ap-
proximated by iterative nonlinear optimization methods which may converge
to local optima).
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Hence, the estimated controller (3.3) will not minimize the cost-function (3.1), and
the question arises whether we can determine a controller using the measured data
which better approaches the minimum of (3.1). This problem will be considered
in the following section.

The extension to the feedback systems of Section 2.3 and 2.4 is very similar. For
the internal models Ĝeu and Ĝru are used in for the feedback system of Section 2.3
and 2.4 respectively. Note, that the estimated internal models which are corrupted
by uncertainty are not parameterizing all stabilizing controllers anymore (cf. (2.41)
and (2.49)), and thus the closed loop may be unstable. We will refer to this problem
in Section 4.5 on page 90 where we discuss the stability robustness of the closed
loop when using the robust Cautious Wiener filter.

3.3 Choice of the model identification method

There are basically two main stream approaches to parametric model identification
using input/output data: prediction error modeling (PEM) and subspace model
identification (SMI). PEM methods yield a transfer function model, whereas SMI
methods yield a state-space model of the system. In the following, we briefly
discuss some differences between PEM and SMI and motivate our preference for
SMI to identify models for ANVC. We only discuss the identification in open-loop
configuration, where the control input is not determined by feedback from the
measured output. For closed-loop system identification, we refer to, e.g., [175].

3.3.1 Prediction error model identification

In PEM identification, the transfer-function from the inputs to each output is
identified separately. Hence, common dynamics which determine multiple outputs
will be modeled multiple times. In SMI there is no distinction between the SISO
and the MIMO case. This is a main difference between PEM identification and
SMI. Therefore, let us consider the SISO case when focusing on PEM. In PEM,
the system to be identified has the following structure (see e.g. [104])

y(k) = G(q−1, θ)u(k) + H(q−1, θ)v(k) (3.4)

with u(k) the deterministic input and v(k) the unmeasured zero-mean white-noise
input and

G(q−1, θ) = Ag(q−1,θ)
Bg(q−1,θ) =

ag
0+ag

1q−1+···+ag
ng

q−ng

1+bg
1q−1+···+bg

ng q−ng ,

H(q−1, θ) = Ah(q−1,θ)
Bh(q−1,θ)

=
ah
0+ah

1 q−1+···+ah
nh

q−nh

1+bh
1 q−1+···+bh

nh
q−nh

and the parameter-vector

θ =
[

ag
0 · · · ag

ng
bg
1 · · · bg

ng
ah
0 · · · ah

nh
bh
1 · · · bh

nh

]T
.

which needs to be estimated.
The one-step ahead predictor is given by

ŷ(k, θ) = (1−H−1(q−1, θ))y(k) + H−1(q−1, θ)G(q−1, θ)u(k) (3.5)
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and the (one-step ahead) prediction error by

ε(k, θ) = y(k)− ŷ(k, θ). (3.6)

It is constrained that H(q−1, θ) is minimum-phase which means that H−1(q−1, θ)
is stable. Then, the objective is to estimate θ by minimizing

J(θ) =
1

N

N∑

k=1

ε2(k, θ) (3.7)

where N is the number of samples which is available for identification. However, in
general, ŷ(k, θ), and thus ε(k, θ), is a non-linear function of θ, and the cost-function
(3.7) will be non-convex in θ which highly complicates solving the minimization
problem. In some special cases the structure of G and H is such that ŷ(k, θ) is
linear in θ such that the minimization problem is quadratic in θ and can be solved
by linear least squares. This happens e.g. in case of the ARX (auto-regressive
exogenous input) model structure in which

G(q−1, θ) =
Ag(q−1, θ)

Bg(q−1, θ)
, H(q−1, θ) =

1

Bg(q−1, θ)
.

In all other cases where ŷ(k, θ) is nonlinear in θ, the minimization will be done
by using iterative nonlinear optimization algorithms, such as Gauss-Newton or
Levenberg-Marquardt methods, which may converge to local minima. In the im-
plementation provided by the Matlab Identification toolbox [105] it is also possible
to include the constraint that G should be stable, which is implemented by means
of a projection on the set of stable systems in every iteration step. This will be use-
ful in Subsection 3.5.1 where a control-relevant identification method is proposed
for using PEM.

3.3.2 Subspace Model Identification

In SMI the objective is to estimate the state-space matrices (A,B,C,D,K) and
the covariance R of the following state-space system, given in innovation form:

x(k + 1) = Ax(k) + Bu(k) + Kv(k) (3.8)

y(k) = Cx(k) + Du(k) + v(k) (3.9)

with E[v(k)vT (l)] = Rδkl. To guarantee minimum-phase relation between v(k) and
y(k), we constrain that the eigenvalues of A−KC are inside the unit-circle in the
complex-plane. The state-space system (3.8),(3.9) can be written in the form of
(3.4) by setting

G(q−1, θ) = C(zI −A)−1B + D,

H(q−1, θ) = C(zI −A)−1K + I.

The state-space description is unique up to a similarity transformation,
which means that for nonsingular T , the same system is described by
(TAT−1, TB,CT−1, D, TK). Hence, the problem is to find (A,B,C,D,K,R) up
to a similarity transformation.
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Note, that y(k) is (again) nonlinear in the coefficients of A,B,C,D and K.
But if the state x(k) would be known we obtain linear relations in (A,B,C,D),
and thus (A,B,C,D) can be solved by linear least squares. Then, to estimate K
and R the following signals are calculated using u(k), x(k), y(k) and the estimated
(A,B,C,D):

w(k) = x(k + 1)−Ax(k)−Bu(k), k = 1, · · ·N
v(k) = y(k)− Cx(k)−Du(k), k = 1, · · ·N.

Using these sequences, estimates of

[
Q S

ST R

]
= E



[

w(k)

v(k)

][
w(k)

v(k)

]T



can be made. Then K, such that the eigenvalues of A −KC are within the unit
circle, is calculated by solving the stabilizing solution P = P T > 0 to the discrete
Riccati equation

P = APAT − (APCT + S)(CPCT + R)−1(APCT + S)T + Q,

and
K = (APCT + S)(CPCT + R)−1.

There are several subspace identification algorithms proposed in the literature, see
e.g. [177, 181] for further details. A common property of these algorithms is, that
they are based on numerically reliable algorithms such as the QR decomposition
and the SVD. In this thesis we will use the PO-MOESP1 algorithm [181].

3.3.3 A simulation example of identifying a vibrating plate
model

To illustrate the identification of systems for ANVC using the PEM and SMI meth-
ods, we performed a series of simulation experiments using a 20th order 4×4 vibrat-
ing plate model. This model has once been identified using measured data from a
real vibrating plate system. We have chosen to perform simulation experiments,
such that a series of system identification tests can be performed under exactly
the same conditions with only other realizations of the measurement noise. The
measurement noise is chosen to be a zero-mean white-noise process, which variance
is such that the signal-to-noise ratio (SNR) is 20dB. In total 100 identification ex-
periments are performed. In each experiment the excitation signal is chosen to be
zero-mean white noise process of N = 4000 samples. The output is calculated using
the 20th order 4 × 4 vibrating plate model, and is distorted by the measurement
noise.

Using PEM a transfer-function model with Output-Error structure has been
identified. To save computation time, the computation of the covariance matrix of

1MOESP stands for Multivariable Output Error State sPace, the preposition PO stands for
Past Outputs and refers to the construction of the Instrumental Variable to cancel state- and
measurement-noise by projection.



56 Nominal controller estimation

Table 3.1: Comparison of PEM-OE (Matlab Identification toolbox implementa-
tion) and PO-MOESP (SLICOT Optimized Fortran implementation) for identifica-
tion of a 4×4 vibrating plate of order n = 20 and signal-to-noise ratio SNR = 20dB.
Results are averaged over 100 experiments with different noise realizations.

Property PEM-OE PO-MOESP

Number of parameters: 656 576

Calculation time (s): 319 53

Signal to simulation error ratio (dB): 15.8 20.1

VAF channel 1 (%): 94.3 99.0

VAF channel 2 (%): 96.9 99.0

VAF channel 3 (%): 97.4 99.0

VAF channel 4 (%): 97.6 99.0

% experiments signal to error ratio >15dB: 83 100

the parameter vector has been turned off. The number of parameters of the 4×4
transfer-function matrix, with each transfer-function of order 20, is 656. The sub-
space identification algorithm, more precisely the PO-MOESP algorithm, see [181],
estimates a 4×4 state-space model of order 20, which has 576 parameters (count-
ing all elements of the state-space matrices A,B,C,D). The computation time
and the model accuracy have been averaged over the 100 experiments and given
in Table 3.1. The model accuracy has been expressed in the signal to simulation
error ratio (in dB) and the Variance Accounted For (VAF, in %). The signal to
simulation error (SER) is defined as

SER(ymeasured, ysimulated) , 10 10 log




my∑
i=1

var(ymeasured,i)

my∑
i=1

var(ymeasured,i − ysimulated,i)


 (dB)

with ymeasured,i and ysimulated,i the i-th channel of the measured output and the
simulated output, obtained by using the model, respectively. The VAF is defined
for each channel i = 1, · · · ,my separately:

V AF (ymeasured,i, ysimulated,i) ,

(
1− var(ymeasured,i − ysimulated,i)

var(ymeasured,i)

)
×100%

We observe, that the model obtained by the PO-MOESP algorithm is accurately
identifying the system (simulation error is at the level of the measurement noise),
whereas the PEM-OE yields a less accurate model and its computation takes much
more time (about 5 minutes). We have to note, that for the PO-MOESP algorithm
a fast implementation in optimized Fortran code has been used, which is contained
in the SLICOT package [159]. It may be clear that we prefer to use this fast and
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accurate implementation of the PO-MOESP algorithm also in the sequel of this
thesis.

3.4 One step and two step modeling approach

Let us now have a closer look at the identification of the models. We will distinguish
two approaches: (1) a one step approach where the full model of the system which
contains all transfer-functions (explicitly in transfer-function description such as
the left-coprime factorization or the common denominator form or in a state-space
description) which are necessary to design the controller, and (2) a two step ap-
proach where in each step a part of the system is estimated: one step uses measured
data, if possible, under no disturbance condition s(k) = 0, and the other step used
measured data under no control condition u(k) = 0. The two approaches are ex-
plained in more detail in the sequel of this subsection. We also explain that the
second approach usually yields a more accurate model description of the system
than the first approach, and thus the controller calculated using this model usually
gives better performance.

3.4.1 Full model identification using one experiment

Let us consider the general feedforward/feedback configuration of Section 2.4 on
page 45. Other, more special, cases can be considered simply by setting specific
transfer-functions to zero. The system to be identified is given by

[
e(k)

r(k)

]
=

[
Geu

Gru

]
u(k) +

[
Ges Hev

Grs Hrv

][
s(k)

v(k)

]
. (3.10)

Usually s(k) cannot be measured and therefore can be considered together with
the measurement noise v(k) as part of the unmeasured noise. Using SMI or PEM
methods the transfer-functions can be identified in state-space or rational poly-
nomial description as described in the previous paragraph using the input/output
data

{u(k),

[
e(k)

r(k)

]
}Nk=1

with u(k) persistently exciting. The condition that u(k) should be persistently
exciting means that, loosely speaking, all dynamics which needs to be modeled
should also be excited by u(k). Usually u(k) is chosen to be low-pass filtered zero-
mean Gaussian white-noise, with the cut-off frequency chosen such that the Nyquist
criterion is satisfied. When using identification methods based on frequency domain
data, it is advised to use pseudo-random multi-sines such that leakage can be
prevented [138].

When using a subspace identification method, the main advantage of this full
model identification approach, is that one compact state-space model of the system
is identified. This state-space model can be directly used to design an H2 optimal
controller, e.g. according to the design equations of Section 2.5.
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However, an important disadvantage of this approach is that the model accuracy
can be poor. This is illustrated in the simulation example of Section 3.4.3 on
page 59 and the experiments on the acoustical duct system in Section 3.6.1 on
page 64. In these examples, it is observed that the model accuracy of Geu and Gru

is significantly less accurate then in the two step approach discussed in Section 3.4.2
below. This two step method requires that the disturbance source can be turned
off, such that s(k) = 0.

3.4.2 Separate model identification using two experiments

In many practical situations the disturbance source can be turned off, s(k) = 0,
during start-up time. For example in an air-conditioning system, the van can be
turned off for some time, such that no disturbing sound is generated. Also for
applications in e.g. airplanes, experiments can be performed when the airplane is
on ground with the engines turned off, such that no disturbing sound is generated.
In practice, note that the system conditions will in general be different in flight
condition, but is usually a less important factor than the disturbance which distorts
the modelling of Geu and Gru in flight condition.

The property that the disturbance can be turned off, enables to prevent the

problem of interference of s(k) and u(k) in the identification of

[
Geu

Gru

]
and

[
Ges

Grs

]
respectively. The following identification steps are proposed:

1. Identify

[
Geu

Grs

]
and, if necessary, the noise models

[
Hev

Hrv

]
, using the

following input/output data under the condition that s(k) = 0:

{u(k),

[
e(k)

r(k)

]
}Nk=1, s(k) = 0, k = 1, · · · , N

and u(k) should be persistently exciting.

2. Identify the minimum-phase spectral factor of

[
Ges

Grs

]
using the following

output data under the condition that u(k) = 0:

{
[

e(k)

r(k)

]
}Nk=1, u(k) = 0, k = 1, · · · , N.

Note, that in the second step the minimum-phase spectral factors of Ges and Grs

are identified because usually s(k) cannot be measured and only the output data
is available. Also note that the effect of the measurement noise v(k) is present in
the measurements of e(k) and r(k), such that the noise-models Hev and Hrv are
(implicitly) modeled together with the spectral factors of Ges and Grs.

The identification of the minimum-phase spectral factor, using output-only
data, can also be done using SMI methods, see e.g. [111].
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3.4.3 A simulation example

Consider the following state-space realization of the general ANVC system (3.10)
on page 57:

x(k + 1) = Ax(k) + Buu(k) + Bss(k)[
e(k)

r(k)

]
=

[
Ce

Cr

]
x(k) +

[
Deu Des

Dru Drs

][
u(k)

s(k)

]
+

[
0.1ve(k)

0.1vr(k)

]

where

A =

[
0.9 0.1

−0.1 0.9

]
, Bu =

[
0

1

]
, Bs =

[
0.2

0.2

]

Ce =
[

1 1
]
, Cr =

[
−0.5 1.5

]

Deu = Des = Dru = Drs = 0,

and s(k), ve(k) and vr(k) all independent zero-mean white noise processes with
unit variance.

The one step approach of Section 3.4.1 and the two step approach of Sec-
tion 3.4.2 have been used to estimate the system. In the one step approach the
PO-MOESP algorithm has been used together with the data batch

{u(k),

[
e(k)

r(k)

]
}Nk=1

which estimates the A,Bu, Ce, Cr, Deu and Dru state-space matrices as well as the
covariance matrices Q, R and S of the noise on the state and the output due to s(k)
(and v(k)). Using these estimates of Q, R and S together with A,Ce and Cr the
Kalman gain K can be computed to obtain a full model description in innovation
form, cf. Section 3.3.2 on page 54.

In the two step approach s(k) has been set to zero: s(k) = 0, k = 1, · · · , N
for the identification of Geu and Gru. Again using the PO-MOESP algorithm,
A,Bu, Ce, Cr, Deu and Dru have been estimated, but the Q, R and S matrices do
not need to be estimated since s(k) = 0.

The identification experiments are repeated 100 times with in each experiment
different realizations of s(k) (only in the one step approach), v(k) and the zero-
mean white noise excitation signal u(k), which has also unit variance.

Table 3.2 shows the average H2 norm of the model errors of the models Ĝeu

and Ĝru obtained by the two methods for different numbers of samples. We clearly
observe, that the identification of Geu and Gru is much more accurate for the two
step approach where Geu and Gru are identified using measured data which is not
distorted by s(k).
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Table 3.2: H2 norm of the model errors in Ĝeu and Ĝru obtained by the one step
approach where s(k) 6= 0 and the two step approach where s(k) = 0, for different
numbers of samples. The H2 norms are averaged over 100 simulation experiments.

Number of ‖Geu − Ĝeu‖2 ‖Gru − Ĝru‖2
samples One step Two step One step Two step

N = 100 0.367 0.0253 0.219 0.0250

N = 500 0.145 0.0090 0.092 0.0100

N = 1000 0.105 0.0065 0.066 0.0070

3.5 Control-relevant identification

3.5.1 Prediction error modeling

In control-relevant identification, the key idea is to identify the model by minimizing
the control cost-function. Here, we discuss the control-relevant identification using
PEM, and more specifically, with Output-Error (OE) model structure, abbreviated
as PEM-OE. In the PEM-OE tool as implemented in the Matlab Identification
toolbox the constraint that the model should be stable can be included. As will
be explained in the sequel, this is a nice feature which yields that the explicit
identification of the spectral factor of Grs (and Ges) is not necessary. In SMI this
stability constraint cannot be taken into account, and an estimate of the spectral
factor of Grs is necessary in the control-relevant identification method using SMI
algorithms, see Section 3.5.2. However, this disadvantage of SMI can be neglected
compared with the advantage of SMI over PEM as illustrated by Table 3.1 on
page 56. Therefore, in this subsection we derive the control-relevant identification
method using PEM to explain the concept. In the next subsection we show how
the control-relevant identification method can be adjusted for SMI methods.

In both approaches (PEM and SMI), we assume that Geu and Gru are perfectly
modeled (i.e. no model errors), which means that the control-relevant identification
cannot compensate for model errors in Geu and Gru, but only in Grs and Ges. In
the following chapter on robustness, Chapter 4, we will deal with uncertainty in
Geu and Gru. In fact, we will only adjust the second step of the “Separate model
identification using two experiments” in the previous section.

The key observation is that the factor [G∗
eu,iGesG

∗
rs,ci]+G†

rs,co of the Causal
Wiener filter (3.2), can be solved from

[G∗
eu,iGesG

∗
rs,ci]+G†

rs,co = arg min
X∈RHmeu×mr

∞

Jid(X), (3.11)

with

Jid(X) = trE
(
(G∗

eu,id(k)−Xr(k))(G∗
eu,id(k)−Xr(k))T

)
(3.12)

which will be proven by Lemma 3.1 below.
Since, the constrained optimization problem to solve X =

[G∗
eu,iGesG

∗
rs,ci]+G†

rs,co is exactly the optimization problem considered in
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PEM-OE identification with the constraint that the model should be stable, the
factor [G∗

eu,iGesG
∗
rs,ci]+G†

rs,co can be estimated using PEM-OE with the following
input/output data

{r(k), G∗
eu,id(k)}Nk=1 (3.13)

with d(k) = e(k) measured under the condition that u(k) = 0. Note, that the
sequence {G∗

eu,id(k)}Nk=1 is generated by filtering backward in time from k = N to
k = 1 because G∗

eu,i is unstable.
The following lemma shows that the identification of the factor X =

[G∗
eu,iGesG

∗
rs,ci]+G†

rs,co is indeed minimizing Jid subject to the stability constraint
and that the identification is control-relevant. By control-relevant we mean, that
in the limit N → ∞ (under reasonable conditions, see [104]) the cost-function to
be minimized in the identification (3.12) equals the cost-function to be minimized
during control (3.1).

Lemma 3.1 Let Geu ∈ RHme×mu
∞ be known, let

W (X) = −G†
eu,oX, with X ∈ RHmeu×mr

∞

then minimizing (3.1) over all X ∈ RHmeu×mr
∞ is equivalent to minimizing (3.12)

over all X ∈ RHmeu×mr
∞ .

Proof: Using the definition of the H2-norm (Definition 2.1 on page 34) and
W = −G†

eu,oX the expression for the control cost-function (3.1) is written as

J =
1

2π
tr

π∫

−π

(
Ges −Geu,iXGrs

)(
Ges −Geu,iXGrs

)∗
dω

Because tr(AB) =tr(BA) and
[

Geu,i G⊥
eu,i

]
is unitary, this can be rewritten as

J =

=
1

2π
tr

π∫

−π

(
Ges −Geu,iXGrs

)∗ [
Geu,i G⊥

eu,i

]
[

G∗
eu,i

G⊥∗
eu,i

]
(
Ges −Geu,iXGrs)

)
dω

=
1

2π
tr

π∫

−π

(
G∗

eu,iGes −XGrs

)∗(
G∗

eu,iGes −XGrs

)
dω +

1

2π
tr

π∫

−π

G∗
esG

⊥
eu,iG

⊥∗
eu,iGesdω

= Jid(X) +
1

2π
tr

π∫

−π

G∗
esG

⊥
eu,iG

⊥∗
eu,iGesdω

where we used Parseval’s equality to write (3.12) in the frequency domain. Hence,
minimizing the identification cost-function (3.12) is equivalent to minimizing the
control cost-function (3.1) (subject to X ∈ RHmeu×mu

∞ ) which had to be proven.
�
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Let us discuss the advantage of estimating the factor [G∗
eu,iGesG

∗
rs,ci]+G†

rs,co

by PEM-OE over explicitly calculating [G∗
eu,iĜesĜ

∗
rs,ci]+Ĝ†

rs,co. Note, that Ĝes

and Ĝrs are minimum-phase models which are estimated using output-only data,
thus Ĝrs,co = Ĝrs and Ĝrs,ci = Imr

. Often, it is difficult to estimate Ĝes

and Ĝrs accurately, especially their zeros. The model-errors will propagate in
[G∗

eu,iĜesĜ
∗
rs,ci]+Ĝ†

rs,co and lead to degradation of the performance. Also the es-

timate of [G∗
eu,iGesG

∗
rs,ci]+G†

rs,co obtained by the identification approach of this
section is contaminated with model errors and thus yields suboptimal performance.
However, here [G∗

eu,iGesG
∗
rs,ci]+G†

rs,co is estimated directly by minimizing the con-
trol cost-function, and will usually lead to better performance compared with the
indirectly, model-based approach.

3.5.2 Subspace model identification

An attractive alternative for multi variable system identification problems is to
apply the subspace identification methods, as e.g. implemented in the SLICOT
library [159]. These methods can be used only for causal/stable systems, but with
the method of [182] the tools can be adjusted easily to identify mixed causal/anti-
causal systems.

As noted above, in the SMI methods no stability constraint on the model can
be taken into account. Further research should give insight, whether the stability
constraint can be incorporated by means of an iterative search algorithm with
projection on the stable set of system (e.g., by means of the methods proposed
in [27,111]). Since the stability constrained is not incorporated in the SMI methods,
when using SMI with input/output data (3.13) the anti-causal system G∗

eu,i would

be modeled instead of [G∗
eu,iGesG

∗
rs,ci]+G†

rs,co. Suppose Grs,co is known, then
a state-space realization of the factor [G∗

eu,iGesG
∗
rs,ci]+ can be estimated by the

mixed causal/anti-causal SMI method of [182] using input/output data

{G†
rs,cor(k), G∗

eu,id(k)}Nk=1. (3.14)

In case only a model Ĝrs,co of Grs,co is known [G∗
eu,iGesG

∗
rs,ci]+ is estimated using

input/output data

{Ĝ†
rs,cor(k), G∗

eu,id(k)}Nk=1.

and the estimate of the Causal Wiener filter is given by

W = −G†
eu,o[ ̂G∗

eu,iGesG∗
rs,ci]+Ĝ†

rs,co (3.15)

with [ ̂G∗
eu,iGesG∗

rs,ci]+ denotes the estimate of [G∗
eu,iGesG

∗
rs,ci]+. Note, that even

in case of model errors in Ĝrs,co , which result in non-white input sequence

{Ĝ†
rs,cor(k)}Nk=1, the estimate [ ̂G∗

eu,iGesG∗
rs,ci]+ is determined such that

[ ̂G∗
eu,iGesG∗

rs,ci]+

(
Ĝ†

rs,cor(k)
)
≈ G∗

eu,id(k), for k = 1, · · · , N.

Again, it can be shown that the identification problem is control-relevant. The
proof is similar to the proof of Lemma 3.1 and therefore not included here. This
advantage over the indirectly model-based approach of Section 3.2 will be illustrated
in the experiments of Section 3.6.2 on page 68.
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Table 3.3: The SIANC algorithm

1. Estimate the secondary path and the acoustical feedback models Ĝeu and

Ĝru and calculate the inner-outer factorization Ĝeu = Ĝeu,iĜeu,o and Ĝ†
eu,o

the right inverse of Ĝeu,o

2. Measure data {r(k), d(k)}Nk=1

3. Estimate Ĝrs,co (minimum-phase spectral factor)

and calculate its left inverse Ĝ†
rs,co

4. Estimate the causal part of [G∗
eu,iGesG

∗
rs,ci] denoted as ̂[G∗

eu,iGesG∗
rs,ci]+ by

mixed causal/anti-causal subspace identification using input/output data:

{Ĝ†
rs,cor(k), Ĝ∗

eu,id(k)}Nk=1

5. Using a realization of an (arbitrary) white-noise process ζ(k)
construct the sequences

η(k) = Ĝrs,coζ(k)

ξ(k) = ̂[G∗
eu,iGesG∗

rs,ci]+ζ(k)

6. Estimate the causal H2 optimal controller W by using input/output data:

{η(k),−Ĝ†
eu,oξ(k)}Mk=1

7. Implement the controller Ĉ by including intrinsic feedback compensation:

Ĉ = (Imu
+ Ŵ Ĝru)−1Ŵ

as demonstrated in Figure 2.5

3.5.3 Order reduction

By explicitly evaluating the multiplications of the factors G†
eu,o, [ ̂G∗

eu,iGesG∗
rs,ci]+

and Ĝ†
rs,co in (3.15) (and analogue in (3.2)) and in case of feedback also the cal-

culations for the IMC controller (2.49), yield a very high order controller. An
alternative approach is to generate the (optimal) control signal uopt(k) using the
individual factors and the reference signal r(k). Then, the multiplications to con-
nect the individual factors can be evaluated implicitly by identifying the optimal
controller using input/output data

{r(k), uopt(k)}Nk=1.

The procedure thus obtained to estimate the Causal Wiener filter is indicated
by the acronym SIANC (Subspace Identification for Active Noise Control) and
summarized in Table 3.3. The underlying assumption in the derivation of the
SIANC algorithm in Table 3.3 is that Geu and Gru can be perfectly estimated, i.e.
Ĝeu = Geu and Ĝru = Gru.
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3.6 Practical demonstration on an acoustical duct
and a vibrating plate

3.6.1 Acoustical duct

In the experiment on the acoustical duct we compare the SIANC algorithm, with
LQG based on a full model of the duct identified in one step (cf. Section 3.4.1)
and the Filtered-U LMS algorithm. We refer to Section 5.3 on page 106 for the
derivation of Filtered-U LMS algorithm.

Description of the setup. The experimental setup is illustrated by Figure 3.1
and 3.2. The acoustical duct, of 3m in length and 12cm diameter, is controlled at a
sampling rate of fs =1kHz using a Pentium 467MHz Celeron PC running Real-Time
Linux version 1.2. Real-time control with a fixed sampling rate can be guaranteed
while other applications, like monitoring with Matlab can be performed at a
lower priority2. The disturbance signal s(k) is a white noise disturbance generated
by the computer and filtered by an anti-aliasing first order low-pass filter with
cutoff frequency at 500Hz. The control signal u(k) actuates the loudspeaker via
a DA-converter and an anti-aliasing low-pass filter again of first order and cutoff
frequency at 500Hz.

SIANC. The SIANC algorithm summarized in Table 3.3 has been used to es-
timate the Causal Wiener filter by a 48th order model Ŵ . Because of using the
two-step approach in which the input/output data (after removing 2 samples delay
in Geu and 9 in Gru)

{u(k),

[
y(k)

ru(k)

]
}Nk=1

is measured under the condition that s(k) = 0, k = 1, · · · , N (hence, e(k) = y(k)

and r(k) = ru(k)) a very accurate 28th order state-space model of

[
Geu

Gru

]
could

be identified using N = 4000 samples. The model accuracy of the estimated state-

space model (Â, B̂u,

[
Ĉe

Ĉr

]
,

[
D̂eu

D̂er

]
) is evaluated using the variance accounted

for (VAF), which is defined as

V AF (ymeasured, ysimulated) ,

(
1− var(ymeasured − ysimulated)

var(ymeasured)

)
×100% (3.16)

where the scalar signals ymeasured and ysimulated are the measured and the sim-

ulated output respectively. For the identified model of

[
Geu

Gru

]
the simulated

2The software was provided by TNO Institute of Applied Physics, Delft, The Netherlands.
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Figure 3.1: Experimental setup of the acoustical
duct which is controlled by a PC running Real-Time
Linux.
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outputs are determined by

ξ(k + 1) = Âξ(k) + B̂uu(k), ξ(0) = 0[
ysimulated(k)

ru,simulated(k)

]
=

[
Ĉe

Ĉr

]
ξ(k) +

[
D̂eu

D̂ru

]
u(k)

The VAF values obtained with the identified model is 99.7% and 99.9% for the
model of Geu and Gru respectively using the same data as used for the identifi-
cation. After collecting new data, the VAF values are 99.3% and 99.7% for the
model of Geu and Gru respectively, which indicates that Geu and Gru are accu-
rately modeled. We refer to [179] for a more detailed description of the use of
subspace identification algorithms to identify these acoustical models.

Using a stochastic subspace identification algorithm an accurate 30th order
model of the spectral factor Grs,co is estimated using the batch {r(k)}Nk=1 of samples
of the reference signal collected under the no-control condition, i.e. u(k) = 0 for
k = 1, · · · , N . Since, the disturbance signal s(k) is generated by the computer, the
complete detector path Grs can be identified too, which shows that the detector
path has non-minimum phase zeros at 347Hz, 407Hz and 468Hz, which will reduce
the performance at these frequencies. These non-minimum phase zeros are due to
aliasing since the anti-aliasing filter is just a simple first-order low-pass filter with
relatively high cutoff at 500Hz. Choosing higher order aliasing filters and/or with
lower cutoff frequency will reduce the effect of aliasing but also add more delay,
which also reduces performance. By trial and error one can find the best choice of
aliasing filters, but here we keep using the first order filters to illustrate the effect
of aliasing at the frequencies.

Then, the factor [G∗
eu,iGesG

∗
rs,ci]+ of the Causal Wiener filter is identified using

causal-/anti-causal subspace identification resulting in a 38th order model. The
anti-causal modes are at 347Hz, 408Hz and 484Hz which are approximately the
frequencies where Grs has non-minimum phase zeros. Finally a 48th order model
of W has been estimated. The obtained performance is illustrated by the power
spectrum of the residual signal, given by the solid curve in Figure 3.3 on page 68.

LQG. The LQG controller has been designed using a full state-space model of
the system with s(k) considered as an unknown white noise stochastic process as
is assumed in the SIANC approach. Using the PO-MOESP subspace identifica-
tion algorithm the deterministic/stochastic model which consists of the state-space

model (A,Bu,

[
Ce

Cr

]
,
[

Deu, Dru

]
) as well as the covariance matrices

[
Qrs Srs

ST
rs Rrs

]
=

[
Bs

Drs

]
[
BT

s DT
rs

]
and

[
Qe Seu

ST
eu Reu

]
=

[
CT

e

DT
eu

]
[
Ce Deu

]

are estimated, cf. the state-space model (2.52), where Dru = 0mr×mu
. Then, using

the result of Theorem 2.2 the H2 optimal controller of order 50 can be calculated.
To determine the accuracy of the deterministic/stochastic model, we will evaluate
the VAF based on the measured output and the one-step ahead prediction obtained
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using the Kalman state-estimator, which is given by

ξ(k + 1) = Âξ(k) + B̂uu(k) + K̂rsε(k)[
ê(k|k − 1)

r̂(k|k − 1)

]
=

[
Ĉe

Ĉr

]
ξ(k) +

[
D̂eu

D̂ru

]
u(k)

ε(k) =

[
e(k)

r(k)

]
−
[

ê(k|k − 1)

r̂(k|k − 1)

]

with K̂rs the estimate of the Kalman gain given by Theorem 2.2 and ε(k) is called
the innovation. Then, the VAF values between the measured and the predicted
outputs are 98.1% and 97.4% for the output e(k) and r(k) respectively based on
measured data used for identification. Using new measured data, the VAF values
are 98.0% and 97.2% which are approximately the same and indicates that no
modeling of e.g. noise has been occurred. However, these values are significantly
lower than obtained by the models of Geu and Gru estimated with s(k) = 0 in the
two-step approach as considered in the SIANC approach. This is explained by the
presence of the unmeasured disturbance s(k) which acts as a disturbance on the
measurements.

The lower accuracy of the model is more clear when using a logarithmic measure
between the simulation or prediction error and the measured output. Therefore let
us express the ratio between the measured output variance and the error variance
in deci-Bell’s (dB) according to

1010log

(
var(ymeasured)

var(ymeasured − ysimulated/predicted)

)
, (dB)

Then, a VAF of 99.5% yields a ratio of 23dB (the level of the model accuracy

obtained by identifying

[
Geu

Gru

]
alone, with s(k) = 0), whereas the ratio of the

prediction of e(k) and r(k) using the Kalman filter are 17dB and 15.5dB, which are
significantly lower! The obtained performance is illustrated by the power spectrum
of the residual signal, given by the dashed curve in Figure 3.3.

FuLMS. For the FuLMS algorithm we used the same model of Geu and Gru

as determined in the SIANC approach, for generating the regression vector and
compensating the acoustical feedback respectively. The step-size was chosen to be
0.1 and the regression vector was normalized with its power, estimated using an
exponential forgetting algorithm. The order of the numerator and the denominator
polynomials was chosen to be 50, which has been chosen on the basis of the con-
trollers obtained with the SIANC and LQG methods. The obtained performance is
illustrated by the power spectrum of the residual signal, given by the dash-dotted
curve in Figure 3.3.

Results. Figure 3.3 shows the power spectra of the measured disturbance (no
control) and the residuals obtained with control based on the SIANC, the LQG
and the FuLMS algorithms. The power spectrum of the residual signal obtained
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Figure 3.3: Spectra of the disturbance (dotted) and the residual signals ob-
tained by the controller estimated by the LQG approach (dashed), the FuLMS
algorithm after 8 minutes (dash-dotted) and the SIANC approach (solid).

by FuLMS is obtained after 8 minutes, after which the algorithm converged. We
observe that all methods yields resonances at about 347Hz, 407Hz and 468Hz
which are explained by aliasing. Furthermore, we observe that the LQG controller
calculated using the full deterministic/stochastic model does not yield optimal
performance. This can be explained by the fact that the model error is relatively
large.

The FuLMS algorithm yields better performance, but after convergence of 8
minutes the performance is still not the same as obtained with the SIANC ap-
proach in which the controller is calculated within 45 seconds. Furthermore, it is
possible that the FuLMS algorithm has been converged to a local minimum, which
may explain that after ≈8 minutes the algorithm does not converge anymore. In
Chapter 5 we will analyze the convergence of the FuLMS algorithm in more detail,
and will also indicate how to improve the convergence rate of FuLMS.

3.6.2 Practical demonstration on a vibrating plate

In the experiment on the vibrating plate we illustrate the control of a pure feedback
system, cf. the block scheme of Figure 2.3, using the SIANC and the H2 optimal
approach by calculating the Causal Wiener filter (2.20) explicitly. In Chapter 4 we
will use the same system to demonstrate the robust version of the SIANC algorithm.
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Figure 3.4: Schematic picture of the vibrating plate
setup.

Description of the experimental setup. Consider Figure 3.4, which shows a
schematic picture of the vibrating plate setup. The plate is an aluminium sand-
wich plate of 6mm thickness, 60cm width and 75cm height. The plate density
is 870kg/m3 and the Young’s modulus 3.6 · 1010Pa. Under the vibrating plate a
loudspeaker generates a broadband disturbance sound, which propagates through
the vibrating plate due to vibration of the plate. The resonance of the plate should
be counteracted by piezoelectric actuators mounted on the lower side of the plate.
The residual vibration of the plate is measured by piezoelectric accellerometers
mounted at the upper side of the plate, collocated with the piezoelectric actuators.
In the experiments 4 sensors and 4 actuators are used as indicated in Figure 3.4.
The sampling frequency was fs =2000Hz, and 4th order low-pass filters with cut-
off frequency at 600Hz are used to prevent aliasing. Though the actuators and
sensors are collocated, there is significant delay between the discrete actuator and
the discrete sensors signals available at the DSP (i.e. PC) of two collocated actu-
ator/sensor pairs, c.f. Figure 3.7 in the next paragraph. This delay is mainly due
to the aliasing filters, and prevents using simple lead-, lag- or PID controllers to
obtain good disturbance rejection.

The block scheme of the system and the IMC based controller is depicted in
Figure 3.5 and equals the pure feedback configuration as discussed in Section 2.3.
Using the IMC approach and assuming that Geu is perfectly modeled, Ĝeu = Geu,
the feedback control problem reformulates into a feedforward control problem, as
depicted in Figure 3.6, which was explained before in Section 2.3. Note, that in the
following chapter, Chapter 4, we will account for the model errors in Geu. Hence,
the SIANC algorithm summarized in Table 3.3 on page 63 can be used again to
estimate W , by making the following identifications

Grs → Ges Gru → Geu r(k)→ d(k).
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Figure 3.6: Feedforward equivalent block scheme of vibrating plate
feedback problem with perfect IMC controller.

Identification of Geu and Ges,co. As in the case of the acoustical duct sys-
tem, the 4 × 4 system Geu is accurately estimated using SMI and 14000 samples
(VAF values of about 99.7% for all channels) by a state-space model of order 80.
Figure 3.7 shows the magnitude and the phase of the identified secondary path
model Ĝeu for input and output channels 1 and 2. We clearly see that the phase
between actuator-sensor pair 11 and 22 drops significantly, which corresponds with
a delay of about 2 samples, which cannot be effectively compensated by simple lead
filters over a sufficiently large bandwidth.

Also the 4×4 spectral factor Ges,co has been identified, resulting in an 40th or-
der model. Though this model has found to be the best that could be obtained after
trying different model orders based on a batch of 14000 samples of the measured
disturbance d(k), the inverse spectral factor G−1

es,co does not perfectly whiten d(k).
This is illustrated by Figure 3.8 which shows the spectrum of the measured distur-
bance (dashed) and the whitened disturbance obtained by the filtering Ĝ−1

es,cod(k)

(solid) for output channel 1. We will see that the model errors in Ĝes,co will be
(partly) compensated using the control-relevant SIANC method.
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(a) Input 1 to output 1.
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(b) Input 2 to output 1.
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(c) Input 1 to output 2.
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(d) Input 2 to output 2.

Figure 3.7: Maginute and phase of the identified secondary path model Ĝeu for
input and output channels 1 and 2.

Controller estimation and results. Using Ĝes,co and Ĝeu, the causal Wiener
filter (2.20) can be calculated explicitly. After model reduction, a 120th order feed
forward controller has been obtained. The average performance over the whole
frequency band based on simulation (hence there is no measurement noise and the
secondary path is perfectly modeled) is given in Table 3.4.

However, the H2 optimal controller can also be estimated using the iden-
tification approach described in Section 3.5.2. The factor [G∗

eu,iGesG
∗
es,ci]+ =

[G∗
eu,iGes,co]+ was estimated by causal/anti-causal subspace identification, using

14000 samples and 100 block rows, the estimate of the order is 48. Because 10

anti-causal poles of G∗
eu,iGes,co are rejected, the order of [ ̂G∗

eu,iGes,co]+ is 38. The
controller obtained by explicitly evaluating the multiplications in (2.20) is of order
158. The time to calculate this controller was about 140sec.’s. The performance
of this controller is given in the second row in Table 3.4. A reduced order feed for-
ward controller of order 80 could be estimated by formulating the controller order
reduction problem as an identification problem (see Section 3.5.3). The simulated
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obtained using the 4 × 4 spectral factor Ĝes,co for
output 1 only.

performance of this controller is given by the third row in Table 3.4. From Ta-
ble 3.4 we infer that the performance of the identified Causal Wiener filter (based
on simulation) is slightly better than the performance of the explicitly calculated
Causal Wiener filter using (2.20). This can be explained by the fact that in the
identification approach, a control-relevant identification problem is solved which
compensates for model errors in Ĝes,co. Furthermore, the order of the identified
controller could be reduced by about a factor 2 (from 158 to 80), without (signifi-
cant) performance loss.

The IMC controller, consisting of the 80th order identified Causal Wiener filter
and the 80th order secondary path model Ĝeu (so the controller is of order 160!),
has been plugged into the real-time setup to control the vibrating plate. Actually,
the state-space controller was transformed into output-normal form to obtain a very
efficient implementation of the controller iterations, see Appendix C. Figure 3.9(a)-
(d) show the measured disturbance and the measured residual signals obtained by
using this controller for output 1-4 respectively. We conclude that good disturbance
suppression has been obtained. Only at ≈ 110Hz performance reduction cannot
be obtained, which is due to a deep anti-resonance in the secondary path at this
frequency, c.f. Figure 3.7. The average performance of this controller is given in
the last row of Table 3.4.

3.7 Conclusions

In this chapter the Causal Wiener filter has been estimated using an identification
approach based on prediction error modeling (PEM) or subspace model identifica-
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Table 3.4: Average reduction in dB’s of obtained by simulation of the Causal
Wiener based on (2.20), the estimated Causal Wiener using the SIANC method
without and with order reduction. The last row contains the measured reduction
obtained by this reduced order controller determined by SIANC method.

output 1 output 2 output 3 output 4

Causal Wiener based on (2.20) 8.3 9.3 6.6 9.7
(order=120)
Identified Causal Wiener: 8.7 9.6 7.0 10.0
(order=158)
Order reduced: 8.5 9.5 6.9 9.8
(order=80)
Measured performance: 7.0 8.8 6.1 9.3
(order reduced)

tion (SMI). The advantage of SMI over PEM has been illustrated by the identifi-
cation of a 4×4 vibrating plate system of order 20, which is accurately modeled by
SMI (VAF of 99%, signal to error ratio is 20dB) within less than 1 minutes com-
putation time, whereas PEM modeling yields less accurate models (VAF of 97%,
signal to error ratio is 15dB) in more than 5 minutes.

Using SMI a two stage approach has been proposed, in which first the secondary
path Geu and (acoustical) feedback Gru has been accurately identified (preferred
with no disturbance s(k) = 0) and second the causal wiener filter is estimated us-
ing the measured reference and disturbance signals. The approach is called SIANC
(subspace identification for active noise control) and demonstrated on an acoustical
duct. The method outperforms the LQG controller based on the full determinis-
tic/stochastic model identified in one experiment. The SIANC approach also re-
sulted in better performance than the FuLMS algorithm after 8 minutes converging
time.

The second contribution of the chapter is, that it has been shown that the cost-
function minimized for identification is the same as which has to be minimized
during control. Hence, the identification is said to be control-relevant. In this way,
model errors on the spectral factor of the reference signal (which is the distur-
bance signal in pure feedback applications) are partly compensated, hence better
performance can be obtained as was demonstrated in a vibrating plate experiment.
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Figure 3.9: Spectrum of measured disturbance (dash-dotted) and the measured
residual signal (solid) for output channel 1–4.



Chapter 4

Robust controller

estimation

4.1 Introduction

In the previous chapter, a nominal controller has been estimated by solving a
control-relevant identification problem. It has been shown, that model errors in
the detector-path Grs and the primary path Ges (of Ges no model is even neces-
sary) can be partly compensated for, since the control cost function is explicitly
minimized during the design. However, model uncertainty due to system variations
and model uncertainty in the secondary path Geu and the feedback Gru have not
been accounted for.

In this chapter a probabilistic robust feedforward design approach will be used,
which explicitly accounts for uncertainty in Ges, Grs, Geu. We will also show, that
robust stability is obtained for feedback systems when using the robust feedforward
controller with the Internal Model Control approach.

In robust control literature, much attention has been paid to minimizing the
H∞ norm, in which model errors are taken into account explicitly (see e.g. [199]).
Though, stability robustness can be increased significantly, too often the perfor-
mance is poor when optimizing for the worst case condition. Better performance
is obtained by mixed H2/H∞ control design, where the H2 performance mea-
sure is optimized subject to H∞ constraints to guarantee user determined stabil-
ity/performance robustness margins (see e.g. [10]). More recently, a minimax LQG
method was proposed in [136], which minimizes the MSE for the worst case model
error (contained in a stochastic model uncertainty description). For more on robust
H2 control, see, e.g., [132] and the references therein.

However, in all these robust design methods, the likelihood of the model errors
is not taken into account. Such a design philosophy may be useful in critical
applications where stability and a certain minimal (often low) level of performance
should be guaranteed under all, including extremely rare, circumstances, e.g. in
flight-by-wire control in aircrafts or biomedical control applications. Most active
control problems are not that critical to pay a significant price on performance,
and optimal performance on the average of all kind of model errors is desired. An

75
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additional reason is that most model identification methods give estimates of the
likelihood of model errors, rather than hard bounds [104]. In [72] Goodwin et al.
write:

“A hard-bound noise model is a very coarse (worst case) model for phys-
ical reality since every value within a compact domain is considered as
likely as any other. A distribution, with noncompact support, is a model
of reality in which the noise values are assumed to be on average cen-
tered around some mean value without precluding the possibility of the
occasional outlier.”

These notions where the motivation of the stochastic embedding approach to quan-
tify model uncertainty. In the same line Sternad et al. [130, 164] proposed a prob-
abilistic robust filtering/feedforward control design method, which minimizes the
MSE averaged over the (estimated) stochastic distribution of the model errors. The
resulting robust filter is called a Cautious Wiener (CW) filter.

The approach of [164] has been taken up in [9], which nicely relates the proba-
bilistic robust solution to standard LQG solutions. However, a particular open-loop
uncertainty description has been adopted which prevents to consider independent
uncertainty on the models of the primary path Ges, secondary path Geu and de-
tector path Grs. As a result, the Cautious Wiener Theorem 4.3 on page 84 given
below, will be a more general result than Theorem 1 and Theorem 2 in [9].

The feedback control design problem based on stochastic model errors has been
considered before by Goodwin et al. in [73]. Due to the model uncertainty, the
feedback cannot be perfectly compensated by IMC, which yields that the sensitiv-
ity function is non-linear in the controller. In [73] a linear approximation of the
sensitivity function has been made, which is similar to the linearization approach
for feedback systems taken in Section 4.5 of this chapter. However, in [73] it is a
priory assumed that a stabilizing controller is available which yields a desired sen-
sitivity in closed-loop with the nominal model. Then, their objective is to design
a new controller by minimizing the H2 norm of the difference between the desired
sensitivity function and the actual sensitivity function averaged over the stochastic
model uncertainty.

In this chapter, we extend the first proposed polynomial based probabilistic
robust feedforward of [130, 164] in a state-space framework. Also, the control-
relevant identification approaches to estimate the nominal controller as presented
in Chapter 3 are extended to estimate the robust controller. The control-relevant
estimation of the feedback control design approach of Goodwin et al. [73] is left for
further research.

The chapter is organized as follows. Section 4.2 presents the probabilistic model
uncertainty description and ways to estimate the uncertainty. Section 4.3 derives
the robust feedforward controller, which is called the Cautious Wiener filter, and
is designed by minimizing the mean squared error averaged over the distribution
of the model uncertainty. Section 4.4 extends the nominal controller estimation
approach taken in Chapter 3 to the estimation of the robust controller. Section 4.5
discusses the feedback configuration using IMC compensation (Section 2.3) together
with the Cautious Wiener filter. It is shown that using the Cautious Wiener filter
the stability robustness is improved compared with using the Causal Wiener filter
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of equation (2.20) on page 36. Finally, Section 4.6 demonstrates the robust design
method on the vibrating plate setup which has been considered in Section 3.6.2
too. In the experiment the uncertainty is caused by variation in an additional mass
mounted on the plate.

4.2 Model uncertainty description

4.2.1 Polynomial uncertainty description

The robust filtering and feedforward control, proposed in [164], is based on a prob-
abilistic description of the model error. Here we briefly discuss the SISO case, for
the MIMO case, see [129, 130]. The nominal model Go(q−1) is considered to be in
transfer-function form

Go(q−1) =
Ao(q−1)

Bo(q−1)

with Ao(q−1) = ao
0+ao

1q
−1+· · ·+ao

no
a
q−no

a and Bo(q−1) = 1+bo
1q

−1+· · ·+bo
no

b
q−no

b .
Then, the structure of the uncertainty model is given by

G(q−1) =
Ao(q−1)

Bo(q−1)
+

A1(q−1)∆A(q−1)

B1(q−1)
(4.1)

with A1(q−1) and B1(q−1) are polynomials in q−1 and determine the weighting
of the uncertainty. The polynomial ∆A(q−1) is an ‘uncertain’ polynomial which
coefficients are stochastic variables:

∆A(q−1) = ∆a0 + ∆a1q
−1 + · · ·+ ∆aδaq−δa (4.2)

such that

E (∆ai) = 0, i = 0, · · · , δa (4.3)

E
(
∆ai∆a∗

j

)
= rij , i, j = 0, · · · , δa (4.4)

with rij ∈ R given and E (.) expectation over the model uncertainty.
The uncertainty model (4.1) can describe parametric (structured) as well as

non-parametric (unstructured) uncertainty (see [129, 164] for illustrations), and is
related to the stochastic embedding approach of Goodwin et al., that also accounts
for unmodeled dynamics, see, e.g., [72]. Note, that no assumptions are made on
the particular distribution of the coefficients ∆ai in (4.2).

Furthermore, note, that it is reasonable to set E (∆ai) = 0 in probabilistic
model uncertainty description, since in case a nonzero mean value E (∆ai) would
be known it can be contained in the nominal model Go(q−1).

Hence, the uncertainty model is determined by the weighting polynomials
A1(q−1), B1(q−1) and the correlations coefficients rij . Further note, that only
uncertainty in the zeros is considered. This is to guarantee stability of the model
for all possible model errors and to prevent non-linear relations in the uncertainty
parameters which cause severe difficulties in the controller design [164]. Uncer-
tainty in the poles has to be reformulated in terms of uncertainty in nummerator



78 Robust controller estimation

coefficients (and thus zeros) by means of Taylor expansions which will determine
the weightings A1(q−1) and B1(q−1), c.f. [129, Sec. 3.7].

It is clarifying to consider the uncertain transfer-function ∆G

∆G(q−1) =
A1(q−1)∆A(q−1)

B1(q−1)

in the frequency domain. Therefore, let us define

φδa(q−1) =
[

1 q−1 · · · q−δa
]

Rδa =




r11 r12 · · · r1δa

r21 r22
. . .

...

...
. . .

. . .
...

rδa1 · · · · · · rδaδa




Then, we have

E
(
∆G(e−jω)

)
= 0, −π ≤ ω < π (4.5)

E
(
∆G(e−jω)∆G(e−jω)∗

)
= Φ∆G(e−jω), −π ≤ ω < π (4.6)

with

Φ∆G(e−jω) =
A1(e−jω)φδa(e−jω)RδaφT

δa(ejω)A1(ejω)

B1(e−jω)B1(ejω)
. (4.7)

From these expressions, we observe that ∆G can be considered as a random vari-
able in the frequency domain, with zero mean and variance Φ∆G(e−jω). This
interpretation will be useful in the sequel.

4.2.2 State-space uncertainty description

The probabilistic model uncertainty description is not limited to polynomial model
descriptions, but can also be used e.g. for uncertain state-space model descriptions.
This can be seen directly from the fact that the polynomial model description is a
special case of a state-space model description. Stated otherwise, the polynomial
description is contained in the state-space description. In the sequel, the MIMO
case will be considered directly.

Consider the state-space description (A1,∆B,C1,∆D) of ∆G(q−1), denoted as

∆G(q−1) ∼
[

A1 ∆B

C1 ∆D

]
(4.8)

with A1 ∈ Rnδ×nδ and C1 ∈ Rl×nδ known matrices and ∆B ∈ Rnδ×m and ∆Dl×m

real-valued stochastic variables, such that

E

([
∆B

∆D

])
= 0nδ+l×m (4.9)

E



[

∆B

∆D

][
∆B

∆D

]T

 =

[
ΦBB ΦBD

ΦDB ΦDD

]
(4.10)
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with ΦBB ∈ Rnδ×nδ , ΦBD = ΦT
DB ∈ Rnδ×l and ΦDD ∈ Rl×l. Then, in the

frequency domain ∆G is characterized by

E
(
∆G(e−jω)

)
= 0, −π ≤ ω < π (4.11)

E
(
∆G(e−jω)∆G(e−jω)∗

)
=
[

C1(ejωI −A1)−1 Il

]
[

ΦBB ΦBD

ΦDB ΦDD

]
·

[
(e−jωI −A1T )−1C1T

Il

]
, −π ≤ ω < π (4.12)

Using the canonical spectral factorization theorem (see, e.g., [85, Theorem 8.3.2,
page 277]) the spectrum at the right-hand side of (4.12) can be written in a form
which will be useful for the robust controller design.

Theorem 4.1 (Canonical spectral factorization) Let Ao be stable, (Ao −
ΦBDΦ−1

DDCo,ΦBB − ΦBDΦ−1
DDΦDB) be controllable on the unit-circle and

[
ΦBB ΦBD

ΦDB ΦDD

]
≥ 0, ΦDD > 0

Then, the discrete-time algebraic Riccati equation (DARE)

P = A1PA1T + ΦBB −KpReK
T
p (4.13)

with

Re = ΦDD + C1PC1T , Kp = (A1PC1T + ΦBD)R−1
e

has a unique solution P such that A1 −KpC
1 is stable, P ≥ 0 and Re > 0.

Moreover, the right-hand side of (4.12) can be factorized as

[
C1(ejωI −A1)−1 Il

]
[

ΦBB ΦBD

ΦDB ΦDD

][
(e−jωI −A1T )−1C1T

Il

]
=

∆̃G(e−jω)∆̃G(e−jω)∗

with ∆̃G(q−1) ∈ RHl×l
∞ given by

∆̃G(q−1) = C1(q−1I −A1)−1KpR
1/2
e + R1/2

e , R1/2
e RT/2

e = Re

and since, Ao −KpC
1 is stable, ∆̃G(q−1) is minimum-phase.

Proof: For the proof we refer to [85, Theorem 8.3.2, page 277]. �

Note, that under the conditions given in Theorem 4.1, the number of inputs of the
spectral factor ∆̃G is equal to the number of outputs l, no matter the number of
inputs, m, of ∆G.
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In some situations, another uncertainty description, which is the dual of
(4.8), will be more useful. Consider, the dual uncertain state-space description
(A1, B1,∆C,∆D) of ∆G, denoted as

∆G(q−1) ∼
[

A1 B1

∆C ∆D

]
(4.14)

with A1 ∈ Rnδ×nδ , B1 ∈ Rnδ×m known matrices and ∆C ∈ Rl×nδ and ∆D ∈ Rl×m

real-valued stochastic variables, such that

E
([

∆C ∆D
])

= 0l×nδ+m, −π ≤ ω < π (4.15)

E
([

∆C ∆D
]T [

∆C ∆D
])

=

[
ΦCC ΦCD

ΦDC ΦDD

]
,−π ≤ ω < π (4.16)

with ΦCC ∈ Rnδ×nδ , ΦCD = ΦDC ∈ Rnδ×m and ΦDD ∈ Rm×m. Then, in the
frequency domain ∆G is characterized by

E
(
∆G(e−jω)

)
= 0l×m, −π ≤ ω < π (4.17)

E
(
∆G(e−jω)∗∆G(e−jω)

)
=
[

B1T (e−jωI −A1T )−1 Im

]
[

ΦCC ΦCD

ΦDC ΦDD

]
·

[
(ejωI −A1)−1B1

Im

]
(4.18)

Again, a useful factorization of the spectrum given by (4.18) exists, which is dual
to the factorization of Theorem 4.1.

Theorem 4.2 (Canonical co-spectral factorization) Let Ao be stable, (Ao −
BoΦ−1

DDΦDC ,ΦCC − ΦCDΦ−1
DDΦDC) be observable on the unit-circle and

[
ΦCC ΦCD

ΦDC ΦDD

]
≥ 0, ΦDD > 0

Then, the discrete-time algebraic Riccati equation (DARE)

P = A1T PAo + ΦCC −KT
p ReKp (4.19)

with
Re = ΦDD + B1T PBo, Kp = R−1

e (B1T PAo + ΦDC)

has a unique solution P such that A1 −B1Kp is stable, P ≥ 0 and Re > 0.
Moreover, the right-hand side of (4.18) can be factorized as

[
B1T (e−jωI −A1T )−1 Im

]
[

ΦCC ΦCD

ΦDC ΦDD

][
(ejωI −A1)−1B1

Im

]
=

∆̃G(e−jω)∗∆̃G(e−jω)
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with ∆̃G(q−1) ∈ RHm×m
∞ given by

∆̃G(q−1) = R1/2
e Kp(q

−1I −A1)−1B1 + R1/2
e , RT/2

e R1/2
e = Re

and since, Ao −B1Kp is stable, ∆̃G(q−1) is minimum-phase.

Proof: The proof is very similar to the proof of Theorem 4.1, but when making
use of the following substitutions

A1 → A1T , C1 → B1T ,

ΦBB → ΦCC , ΦBD → ΦCD, ΦDB → ΦDC .

Cf. [85, Theorem.8.3.2, page 277]. �

Now, note, that under the conditions given in Theorem 4.2, the number of outputs
of the spectral factor ∆̃G is equal to the number of inputs m, no matter the number
of outputs, l, of ∆G.

4.2.3 Obtaining the uncertainty model

The stochastic uncertainty models (4.8) and (4.14) are determined by a state-

space realization of ∆̃G. However, the question is, how to obtain a state-space
realization of ∆̃G which captures the uncertainty. As in [129], we can distinguish
several approaches to quantify the model errors:

• Pragmatic tuning: in case it is known that in a particular frequency band the
model uncertainty is large, ∆̃G can be chosen to be a band-pass filter with
high gain (determined by trial and error) in this frequency band.

• First principles: in case a white-box model is available, the uncertainty models
can be derived by variation of physical parameters (e.g., using Taylor expan-
sion).

• System identification / Stochastic embedding: using PEM and neglecting bias
errors the covariance of the parameter error vector can be estimated too [104].
When the model to be identified is linear in the parameters (e.g. FIR, Laguerre
or Kautz expansions), from this covariance matrix the uncertainty model with
the structure (4.1) can be derived directly. When bias errors cannot be ne-
glected, the stochastic embedding approach can be used in which the bias error
is also considered as a random variable, see, e.g., [72].

additionally we distinguish:

• Model error modeling: in [103] it was proposed to estimate an error model
to quantify the model error. By estimating a series of error models a sam-
ple estimate of the variance can be estimated, as will be discussed below in
more detail. The advantage of this approach, is that it is independent of the
identification method and thus subspace identification can be used as well.
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The pragmatic tuning approach is quite ad hoc, but may often be useful, e.g., to
model uncertainty at low and high frequencies just outside or at the border of the
frequency band of interest for control.

Derivation of the uncertainty model from first principles is often complicated,
since it is difficult to obtain an accurate white-box model of the system to be
controlled.

The identification of the uncertainty model using PEM system identification
or stochastic embedding, is only restricted to model structures which are linear
in the parameters, and thus cannot be used in combination with subspace iden-
tification methods. In [14] uncertainty of state-space models has been estimated
using bootstrap-based methods. However, these approaches are computationally
very complex, and thus not feasible for the high dimensional models considered in
active noise and vibration control.

The approach, taken in this thesis, to estimate the model uncertainty is partly
based on model error modeling. The model of the nominal system Go and the
uncertainty spectral factor ∆̃G are estimated by means of a series of p experiments.
In each experiment the (environmental) conditions are different resembling realistic
situations in which the system can be (for example a vibrating plate with different
mass loads). In each experiment G is modeled which yields a series of p models

{Ĝi}pi=1

In case the bias and variance errors in each model Ĝi can be neglected compared
with the differences Ĝi − Ĝj (i 6= j), the average Ĝo which is the model of the
nominal system Go is determined by the average

Ĝo(e−jω) =
1

p

p∑

i=1

Ĝi(e−jω), π ≤ ω < π

Furthermore, the spectral factor ∆̂G which models ∆̃G is determined as a spectral
factor of

∆̂G(e−jω)∗∆̂G(e−jω) =
1

p

p∑

i=1

(Ĝi(e−jω)− Ĝo(e−jω))∗(Ĝi(e−jω)− Ĝo(e−jω))

π ≤ ω < π

Since, Ĝo is estimated by an average over p models which states may be in different
subspaces, the order of Ĝo will be very large (i.e. the sum of the orders of the
p models) when the average is calculated explicitly. To circumvent a very high

order model for Ĝo and a high order spectral factorization problem for ∆̂G, we
approximate Ĝo and ∆̂G by solving identification problems. The restricted order
model Ĝo can be estimated using input/output data {u(k), y(k)}Nk=1 with u(k) ∈
Rm zero mean white noise and

y(k) =
1

p

p∑

i=1

Ĝiu(k)



4.3 Derivation of the Cautious Wiener filter 83

+

+

PSfrag replacements

s(k) d(k)

e(k)

r(k) u(k)

y(k)
W

Go
es

Go
euGo

rs

∆Ges

∆Grs ∆Geu

ms

me

mumr

Figure 4.1: Block scheme of the multichannel feedforward active control problem
with uncertainty, with ms noise sources, mr reference, mu control and me error
signals and no measurement noise.

The restricted order spectral factor ∆̂G can be determined by estimating the spec-
trum of

ξ(k) =
1√
p

p∑

i=1

(Ĝi − Ĝo)ζi(k)

with ζi(k), i = 1, ..., p such that E[ζi(k)] = 0 and E[ζi(k)ζi(l)] = Imδ(k − l) and
ζi independent of ζj for i 6= j.

A state-space realization of {Ĝi}pi=1, Ĝo as well as the spectral factor ∆̂G can

be estimated using subspace identification methods. The spectral factor ∆̂G needs
to be estimated by stochastic subspace identification methods, see, e.g., [111].

4.3 Derivation of the Cautious Wiener filter

Let us now return to the feedforward control problem considered in Section 2.2.1 on
page 31. However, now the systems are perturbed with uncertainty as illustrated
in Figure 4.1, cf. Figure 2.1. The uncertain systems ∆Ges, ∆Grs and ∆Geu are
assumed to be stochastic variables as considered in Section 4.2, and independent
of each other, independent of the nominal systems Go

es, Go
rs and Go

eu and the
stochastic process s(k). This means that for u, x referring both to e or r and v, y
to s or r, we also have

E (∆G∗
uv∆Gxy) = 0, for uv 6= xy (4.20)

E
(
∆Guv∆G∗

xy

)
= 0, for uv 6= xy. (4.21)

These assumptions are usually not satisfied in practice, since the uncertainties
in Ges, Grs and Geu are in general not independent. For example, temperature
variations will affect all transfers. However, without assuming this simplifying
assumption, the modelling and analysis of the uncertainty as well as the robust
controller design will become very difficult, if even possible at all. In addition, in the
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following we show that even though these assumptions (4.20),(4.21) are simplifying
reality, controllers are obtained which are indeed robust and in Section 4.6 good
robust performance is obtained in real-life experiments.

Furthermore, we assume that the uncertainties has zero mean and known co-
variance, i.e. let

E (∆Ges) = 0me×ms
, E (∆Ges∆G∗

es) = ∆̃Ges∆̃G
∗
es (4.22)

E (∆Grs) = 0mr×ms
, E (∆Grs∆G∗

rs) = ∆̃Grs∆̃G
∗
rs (4.23)

E (∆Geu) = 0me×mu
, E (∆G∗

eu∆Geu) = ∆̃G
∗
eu∆̃Geu (4.24)

with ∆̃Grs and ∆̃Geu given. In the following, we will see that the solution of
the robust feedforward control problem is independent of ∆̃Ges, and thus it is not
necessary to assume ∆̃Ges to be known.

The objective in the Cautious Wiener design approach is to minimize the MSE
averaged over the distribution of the uncertain systems [164], i.e. to minimize

Jrob = trE
(
E
(
e(k)eT (k)

))
. (4.25)

In this expression the residual disturbance e(k) and the reference signal r(k) are
given by

e(k) = (Go
es + ∆Ges)s(k) + (Go

eu + ∆Geu)u(k) (4.26)

r(k) = (Go
rs + ∆Grs)s(k) (4.27)

and the feedforward control-law by

u(k) = Wr(k). (4.28)

The robust feedforward controller problem is summarized as follows.

Problem 4.1 (Robust feedforward controller design problem) Given the
nominal systems Go

esRHme×mr
∞ , Go

rs ∈ RHmr×ms
∞ , Go

eu ∈ RHme×mu
∞ and the

spectral-factors ∆̃Grs ∈ RHmr×mr
∞ , ∆̃Geu ∈ RHmu×mu

∞ which determine the un-
certainty ∆Grs and ∆Geu according to (4.23),(4.24). Then, solve W ∈ RHmu×mr

∞
such that the robust cost-function (4.25) is minimized, for the uncertain system
given by (4.26),(4.27) and the control-law (4.28).

The problem is solved by the following theorem.

Theorem 4.3 (Cautious Wiener filter) Given the nominal systems Go
es ∈

RHme×mr
∞ , Go

rs ∈ RHmr×ms
∞ , Go

eu ∈ RHme×mu
∞ and the spectral-factors

∆̃Grs ∈ RHmr×mr
∞ , ∆̃Geu ∈ RHmu×mu

∞ . Assume that Gaug
rs (q−1) =

[
Go

rs(q
−1) ∆̃Grs(q

−1)
]

and Gaug
eu (q−1) =

[
Go

eu(q−1)

∆̃Geu(q−1)

]
do not loose rank

∀|q| = 1. Then, let
[

Go
rs ∆̃Grs

]
= Gaug

rs,co

[
Gaug

rs,ci1 Gaug
rs,ci2

]
(4.29)

[
Go

eu

∆̃Geu

]
=

[
Gaug

eu,i1

Gaug
eu,i2

]
Gaug

eu,o (4.30)



4.3 Derivation of the Cautious Wiener filter 85

be the outer-inner and inner-outer factorizations of the augmented systems Gaug
rs

and Gaug
eu respectively and Gaug†

rs,co a left-inverse of Gaug
rs,co and Gaug†

eu,o a right-inverse
of Gaug

eu,o. Then the Cautious Wiener filter is given by

W = −(Gaug
eu,o)

† [Gaug∗
eu,i1 Go

es Gaug∗
rs,ci1

]
+

(Gaug
rs,co)

† (4.31)

and minimizes (4.25), which is equivalent to

Jrob =

∥∥∥∥∥

[
Go

es 0me×mr

0mu×ms
0mu×mr

]
+

[
Go

eu

∆̃Geu

]
W
[

Go
rs ∆̃Grs

]∥∥∥∥∥

2

2

+ ‖∆̃Ges‖22

(4.32)

Proof: The proof is obtained by rewriting (4.25) in the form that is minimized
by the Causal Wiener filter Theorem 2.1. Using Parseval’s rule, the stationarity
of s(k) and its independence with the uncertainties ∆Ges, ∆Grs and ∆Geu, (4.25)
can be written in the frequency domain as follows

Jrob =
1

2π
E


tr

π∫

−π

(
(Go

es + ∆Ges) + (Go
eu + ∆Geu)W (Go

rs + ∆Grs)
)(

.
)∗

dω




where (.)∗ denotes the complex-conjugate of the preceding factor. Because of the
zero-mean property of ∆Ges, ∆Grs, ∆Geu and the fact they are mutually indepen-
dent and independent with Go

es, Go
rs and Go

eu the cost-function Jrob can be further
rewritten as

Jrob =
1

2π
tr

π∫

−π

{
(Go

es + Go
euWGo

rs)(.)
∗ + ∆̃Ges∆̃G

∗
es + Go

euW ∆̃Grs∆̃G
∗
rsW

∗Go∗
eu+

+ ∆̃GeuWGo
rsG

o∗
rsW

∗∆̃G
∗
eu + ∆̃GeuW ∆̃Grs∆̃G

∗
rsW

∗∆̃G
∗
eu

}
dω (4.33)

=
1

2π
tr

π∫

−π

{([ Go
es 0me×mr

0mu×ms
0mu×mr

]

︸ ︷︷ ︸
=Gaug

es

+

[
Go

eu

∆̃Geu

]

︸ ︷︷ ︸
=Gaug

rs

W
[

Go
rs ∆̃Grs

]

︸ ︷︷ ︸
=Gaug

eu

)(
.
)∗

+

+ ∆̃Ges∆̃G
∗
es

}
dω (4.34)

which is equivalent to (4.32). Since the second term is independent of W , (4.32) is
minimized by minimizing only its first term, which has the same structure as the
cost-function (2.21) on page 37 minimized in Theorem 2.1. Since it is assumed that
Gaug

rs (q−1) and Gaug
eu (q−1) do not loose rank ∀|q| = 1, according to Theorem 2.1

the filter W which minimizes Jrob is given by

W = −Gaug†
eu,o [Gaug∗

eu,i Gaug
es Gaug∗

rs,ci ]+Gaug†
rs,co.

Because of the zero blocks in Gaug
es , this expression can be reduced to (4.31). �

From this proof it is inferred, that the effect of the uncertainty ∆Grs is the same
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as adding measurement noise on the reference signal, with Hrv = G̃rs and Hev =
0me×mv

, as considered in Section 2.2.3 on page 39. Dual to this, the effect of the

uncertainty ∆Geu is the same as the control-effort weighting, with G̃eu = ∆̃Geu,
as considered in Section 2.2.4 on page 41.

Furthermore, (4.33) the uncertainty terms ∆̃Grs and ∆̃Geu push W to zero.
This means that in the frequency bands where the uncertainty in Grs and Geu

is large, the gain of W is reduced, compared with the Causal Wiener solution
based on the nominal system. This is also intuitive, because by reducing the
gain of W the effect of the uncertainty on e(k) is also reduced. When choosing
W = 0mu×mr

the uncertainties ∆Grs and ∆Ges has no effect on e(k), but on
the other side no performance will be obtained. Choosing W to be the Causal
Wiener filter optimal performance is obtained under the nominal condition, but
there exists ∆Grs and ∆Geu which severely deteriorate the performance. Between
these utmost conditions, choosing W to be the Cautious Wiener filter (4.31) yields
the best performance on the average.

Note, that the solution (4.31) is independent of the uncertainty factor ∆̃Ges.
This is also intuitive since W and ∆Ges are parallel to each other and ∆Ges has
zero-mean. Hence, by changing the value of W the effect of the uncertainty ∆Ges

on e(k) cannot be varied.
The solution (4.31) is obtained by minimizing the cost function (4.34) which

equals the H2 norm of the system with augmented inputs and outputs. Confer this
solution with Theorem 1 and Theorem 2 in [9], where only the inputs or outputs
of the system are augmented.

The structure of the Cautious Wiener filter (4.31) is very similar to the structure
of the Causal Wiener filter (2.20) on page 36, but now the factorizations

Go
rs = Gaug

rs,coG
aug
rs,ci1 (4.35)

Go
eu = Gaug

rs,i1G
aug
eu,o (4.36)

are no more outer-inner and inner-outer factorizations anymore. From the outer-
inner factorization of Gaug

rs and the inner-outer factorization of Gaug
eu in Theo-

rem 4.3, it is observed that

Gaug
rs,coG

aug∗
rs,co = Go

rsG
o∗
rs + ∆̃Grs∆̃G

∗
rs

Gaug∗
eu,o Gaug

eu = Go∗
euGo

eu + ∆̃G
∗
eu∆̃Geu.

There are situations in which the uncertainty is such that

Go
rsG

o∗
rs + ∆̃Grs∆̃G

∗
rs ≈ Go

rsG
o∗
rs + ρ2

rsI (4.37)

Go∗
euGo

eu + ∆̃G
∗
eu∆̃Geu ≈ Go∗

euGo
eu + ρ2

euI (4.38)

with ρrs, ρeu ∈ R. In this case the uncertainty perturbs especially the zeros of the
system and all at the same extent. The uncertainty is (approximately) frequency
independent and determined by the scalar values ρrs and ρeu only. This case is
equivalent to increasing the variance of measurement noise v(k) on the reference
signal to ρ2

rs and adding control-effort weighting to the cost-function with a weight
of ρ2

eu. Tuning the measurement noise and the control-effort weighting are well



4.4 Estimation of the Cautious Wiener filter 87

known tools in literature to increase robustness (cf. the LTR approach, e.g., [42],
also see [121, Section 8.5]), but here the tuning values ρ2

rs and ρ2
eu are chosen with

explicit relation with the uncertainty. It may be clear that in case (4.37),(4.38)
do not hold, but still values for ρ2

rs and ρ2
eu are used to increase robustness, the

performance to robustness trade-off may be poor.

4.4 Estimation of the Cautious Wiener filter

4.4.1 Uncertainty in Geu

In the case there is only uncertainty in the secondary path system Ges (and thus
Ges = Go

es and Grs = Go
rs), the control-relevant estimation of the Cautious Wiener

filter is very similar to the control-relevant approach described for the Causal
Wiener filter in Section 3.5. The models of Geu,i and Geu,o need to be replaced by
models of Gaug

eu,i1 and Gaug
eu,o. The models of Gaug

eu,i1 and Gaug
eu,o can be derived (us-

ing inner-outer factorization, cf. Section 4.3) from the nominal model Ĝo
eu and the

uncertainty spectral factor ∆̂Geu, which are obtained as described in Section 4.2.3.
The control-relevant identification can be performed, because the factor

[Gaug∗
eu,i1GesG

∗
rs,ci]+G†

rs,co of the Cautious Wiener filter (4.31), can be solved from

[Gaug∗
eu,i1GesG

∗
rs,ci]+G†

rs,co = arg min
X∈RHmeu×mr

∞

Jid(X), (4.39)

with

Jid(X) = trE
(
(Gaug∗

eu,i1d(k)−Xr(k))(Gaug∗
eu,i1d(k)−Xr(k))T

)
(4.40)

which is proven by the next lemma, Lemma 4.1.

Lemma 4.1 Let Gaug
eu =

[
Go

eu

∆̃Geu

]
∈ RHme+mu×mu

∞ be known, let

W (X) = −Gaug†
eu,o X, with X ∈ RHmeu×mr

∞

then minimizing (4.25) over all X ∈ RHmeu×mr
∞ is equivalent to minimizing (4.40)

(with ∆Ges = 0me×ms
and ∆Grs = 0mr×ms

) over all X ∈ RHmeu×mr
∞ .

Proof: The proof is along the same lines as the proof of Lemma 3.1. Using
the definition of the H2-norm (Definition 2.1 on page 34) and W = −Gaug†

eu,o X the
expression for the robust control cost-function (4.25), i.e. (4.34), is written as

Jrob =
1

2π
tr

π∫

−π

([ Ges

0mu×ms

]
−
[

Gaug
eu,i1

Gaug
eu,i2

]
XGrs

)(
.
)∗

dω

Because tr(AB) =tr(BA) and

[
Gaug

eu,i1 Gaug⊥
eu,i1

Gaug
eu,i2 Gaug⊥

eu,i2

]
is unitary, this can be rewritten
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as

Jrob = 1
2π tr

π∫
−π

([ Ges

0mu×ms

]
−
[

Gaug
eu,i1

Gaug
eu,i2

]
XGrs

)∗
[

Gaug
eu,i1 Gaug⊥

eu,i1

Gaug
eu,i2 Gaug⊥

eu,i2

]
·

[
Gaug∗

eu,i1 Gaug∗
eu,i2

Gaug⊥∗
eu,i1 Gaug⊥∗

eu,i2

]([ Ges

0mu×ms

]
−
[

Gaug
eu,i1

Gaug
eu,i2

]
XGrs

)
dω

=
1

2π
tr

π∫

−π

(
Gaug∗

eu,i1Ges −XGrs

)∗(
Gaug∗

eu,i1Ges −XGrs

)
dω+

+
1

2π
tr

π∫

−π

G∗
esG

aug⊥
eu,i1 Gaug⊥∗

eu,i1 Gesdω

= Jid(X) +
1

2π
tr

π∫

−π

G∗
esG

aug⊥
eu,i1 Gaug⊥∗

eu,i1 Gesdω

where we used Parseval’s equality to write (4.40) in the frequency domain. Hence,
minimizing the identification cost-function (4.40) is equivalent to minimizing the
control cost-function (4.25) (subject to X ∈ RHmeu×mu

∞ ) which had to be proven.
�

Hence, using PEM-OE and the input/output data

{r(k), G∗
eu,i1d(k)}Nk=1

the factor [Gaug∗
eu,i1GesG

∗
rs,ci]+G†

rs,co of the Cautious Wiener filter can be determined,
cf. Section 3.5.1. Similarly, it can be shown that using SMI (cf. Section 3.5.2), and
the input/output data

{G†
rs,cor(k), Gaug∗

eu,i1d(k)}Nk=1

the factor [Gaug∗
eu,i1GesG

∗
rs,ci]+ can be determined.

4.4.2 Uncertainty on Ges, Grs and Geu

In case there is also uncertainty on Ges and Grs the control-relevant identification
of the factors [Gaug∗

eu,i1G
o
esG

aug∗
rs,ci1]+Gaug†

rs,co (with PEM-OE) and [Gaug∗
eu,i1G

o
esG

aug∗
rs,ci1]+

(with SMI) needs a bit more care. First of all, we assume that the measured data

{r(k), d(k)}Nk=1,

with u(k) = 0, k = 1, · · ·N , is measured under the nominal system condition, such
that

r(k) = Go
rss(k)

d(k) = Go
ess(k).

This is a rather strong assumption, which cannot always be achieved in practice,
since the nominal (i.e. average) condition cannot always be guaranteed. In case



4.4 Estimation of the Cautious Wiener filter 89

s(k) can be chosen freely, one can choose the same realization of {s(k)}Nk=1 for all
p conditions (cf. Section 4.2.3) and determine r(k) and d(k) by averaging:

r(k) =
1

p

p∑

i=1

ri(k), and d(k) =
1

p

p∑

i=1

di(k), for k = 1, · · · , N

and with {ri(k)}Nk=1 and {di(k)}Nk=1 the reference signal and the disturbance mea-
sured under condition i.

Second, let us introduce

rδ(k) = r(k) + νδ(k) (4.41)

with

νδ(k) = ∆̃Grs(q
−1)ν(k) (4.42)

and ν(k) ∈ Rmu is zero-mean white noise and uncorrelated with s(k), such that

E







ν(k)

1

s(k)


 νT (l)


 =




Imu
δkl

01×mu

0ms×mu


 .

Then, using Parseval’s equation, it follows that the power-spectrum of rδ(k), de-
noted by Φrδ

(e−jω), is given by

Φrδ
(e−jω) = Go

rs(e
−jω)Go

rs(e
−jω)∗ + ∆̃G(e−jω)∆̃Grs(e

−jω)∗

= Gaug
rs,co(e

−jω)Gaug
rs,co(e

−jω)∗,

and thus Gaug†
rs,co is a whitening filter for rδ(k).

Third, let us define the cost-function

Jid(X) = trE
(
(Gaug∗

eu,i1d(k)−Xrδ(k))(Gaug∗
eu,i1d(k)−Xrδ(k))T

)
. (4.43)

Then, from the next lemma, Lemma 4.2 it follows that the factor
[Gaug∗

eu,i1G
o
esG

aug∗
rs,ci1]+Gaug†

rs,co can be solved from

[Gaug∗
eu,i1G

o
esG

aug∗
rs,ci1]+Gaug†

rs,co = min
X∈RHmeu×mr

∞

Jid(X)

This optimization problem can be solved using PEM-OE using the constraint that
X should be stable and the input/output data

{rδ(k), Gaug∗
eu,i1d(k)}Nk=1.

Lemma 4.2 Let Gaug
eu =

[
Go

eu

∆̃Geu

]
∈ RHme+mu×mu

∞ be known, let

W (X) = −Gaug†
eu,o X, with X ∈ RHmeu×mr

∞

then minimizing (4.25) over all X ∈ RHmeu×mr
∞ is equivalent to minimizing (4.43)

over all X ∈ RHmeu×mr
∞ .
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Proof: The proof is along the same lines as the proof of Lemma 3.1 and 4.1. Using
the definition of the H2-norm (Definition 2.1 on page 34) and W = −Gaug†

eu,o X the
expression for the robust control cost-function (4.25), i.e. (4.34), is written as

Jrob =
1

2π
tr

π∫

−π

([ Go
es 0me×mr

0mu×ms
0mu×mr

]
−
[

Gaug
eu,i1

Gaug
eu,i2

]
X
[

Go
rs ∆̃Grs

])(
.
)∗

dω+

+ ∆̃es

with
∆̃es = ||∆̃Ges||22.

Because tr(AB) =tr(BA) and

[
Gaug

eu,i1 Gaug⊥
eu,i1

Gaug
eu,i2 Gaug⊥

eu,i2

]
is unitary, this can be rewritten

as

Jrob =

=
1

2π
tr

π∫

−π

([ Go
es 0me×mr

0mu×ms
0mu×mr

]
−
[

Gaug
eu,i1

Gaug
eu,i2

]
X
[
Go

rs G̃rs

])∗
[

Gaug
eu,i1 Gaug⊥

eu,i1

Gaug
eu,i2 Gaug⊥

eu,i2

]
·

[
Gaug∗

eu,i1 Gaug∗
eu,i2

Gaug⊥∗
eu,i1 Gaug⊥∗

eu,i2

]([ Ges 0me×mr

0mu×ms
0mu×mr

]
−
[

Gaug
eu,i1

Gaug
eu,i2

]
X
[
Go

rs ∆̃Grs

])
dω + ∆̃es

=
1

2π
tr

π∫

−π

{(
Gaug∗

eu,i1Ges −XGrs

)(
Gaug∗

eu,i1Ges −XGrs

)∗
+ X∆̃Grs∆̃G

∗
rsX

∗
}

dω+

+
1

2π
tr

π∫

−π

G∗
esG

aug⊥
eu,i1 Gaug⊥∗

eu,i1 Gesdω + ∆̃es

= Jid(X) +
1

2π
tr

π∫

−π

G∗
esG

aug⊥
eu,i1 Gaug⊥∗

eu,i1 Gesdω + ∆̃es

where we used Parseval’s equality to write (4.40) in the frequency domain and using
the independence between s(k) and ν(k). Hence, minimizing the identification cost-
function (4.43) is equivalent to minimizing the control cost-function (4.25) (subject
to X ∈ RHmeu×mu

∞ ) which had to be proven. �

Now, it follows that using SMI (cf. Section 3.5.2), and the input/output data

{Gaug†
rs,corδ(k), Gaug∗

eu,i1d(k)}Nk=1

the factor [Gaug∗
eu,i1GesG

aug∗
rs,ci1]+ can be determined.

4.5 Stability robustness in feedback applications

In the previous sections, Section 4.3 and 4.4, the feedforward controller config-
uration has been considered. Now, we will consider the feedback configuration
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Figure 4.2: Block scheme of the multichannel feedback active control problem with
uncertainty in Geu = Go

eu + ∆Geu.

discussed in Section 2.3, but with uncertainty in the secondary path Geu, cf. Fig-
ure 4.2. As in Section 4.3 on page 83 we will assume that the model uncertainty
∆Geu(e−jω) is a stochastic variable with

E
(
∆Geu(e−jω)

)
= 0me×mu

, −π ≤ ω < π,

E
(
∆Geu(e−jω)∗∆Geu(e−jω)

)
= ∆̃Geu(e−jω)∗∆̃Geu(e−jω), −π ≤ ω < π

and the nominal system Go
eu and the uncertainty spectral factor ∆̃Geu are known.

However, contrary to the case without uncertainty the IMC controller (cf. (2.41)
on page 44)

C = (Imu
+ WGo

eu)−1W (4.44)

illustrated in Figure 4.3(a) does not internally stabilize the closed loop for all
W ∈ RHmu×me

∞ and ∆Geu 6= 0me×mu
! The presence of ∆Geu 6= 0me×mu

highly
complicates the controller design, because ∆Geu yields a feedback, and thus e(k)
is not linear in W . In fact

e(k) =
(
Ges + (Go

eu + ∆Geu)(Imu
−W∆Geu)−1WGes

)
s(k) (4.45)

which is equivalent to e(k) generated by the system depicted in Figure 4.3(b). From
(4.45) it is derived, that the loop-gain of the closed-loop is given by

L(q−1) = W (q−1)∆Geu(q−1) (4.46)

cf. Figure 4.3(b). Then, according to the small gain theorem, see, e.g., [199],
stability is guaranteed if W ∈ RHmu×me

∞ , ∆Geu ∈ RHme×mu
∞ and the following

inequality is satisfied

‖W (e−jω)‖∞ <
1

‖∆Geu(e−jω)‖∞
, −π ≤ ω < π. (4.47)
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eu and the simplified block scheme which illustrates the feedback
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with ||A||∞ is the maximum singular value of the complex-valued matrix A ∈
Cmx×my . From (4.47) we infer that —loosely speaking— the gain of W has to be
decreased at those frequencies where ∆Geu is ‘large’ on the average. This is exactly
what is achieved by the Cautious Wiener filter, cf. Section 4.3, where the uncer-
tainty factor ∆̃Geu pushes W to zero at the frequencies ω where ∆̃Geu(e−jω) is
significant. However, when using the Cautious Wiener filter (4.31) (with Grs = Ges

for the pure-feedback case, cf. Section 2.3) the condition (4.47) is still not guaran-
teed to be satisfied. Therefore, we will introduce a nonnegative tuning parameter
ρ ∈ R, which allows to push W stronger to zero, by replacing

∆̃Geu →
√

ρ∆̃Geu (4.48)

in Theorem 4.3. Choosing ρ = 1 is equivalent to the Cautious Wiener. By choosing
ρ > 1 the gain of W will be more reduced such that (4.47) will be satisfied for some
ρ.

Note, that here the frequency dependency of ∆Geu is explicitly taken into ac-
count, whereas in H∞-theory the frequency dependency of model errors is implicitly
taken into account by means of choosing the proper weighting functions. Further-
more, the introduction of the tuning parameter ρ is similar to the introduction
of a user chosen ∞-norm bound (often indicated by γ) on the uncertainty; both
parameters can be increased to improve stability robustness.

In the design of W , based on the Cautious Wiener filter, it is implicitly assumed
that there is no feedback, which is not a correct assumption as is clear from (4.45)
and Figure 4.3(b) which shows indeed feedback from ∆Geu. However, assuming
that

||W∆Geu||∞ � 1

and thus (4.47) is certainly satisfied, we can write

(Imu
−W∆Geu)−1 = Imu

+ W∆Geu + (W∆Geu)2 + (W∆Geu)3 + · · · (4.49)

≈ Imu
. (4.50)

Hence (4.45) can be approximated by

e(k) ≈
(
Ges + (Go

eu + ∆Geu)WGes

)
s(k) (4.51)

which justifies neglecting the feedback term ∆Geu. This approximation of e(k) to
be linear in W , is also obtained by taking the first and second terms of the Taylor
series expansion of 4.45 with respect to W . The linear approximation is comparable
with the linearization of the (closed-loop) sensitivity function in [73].

Table 4.1 summarizes the obtained robust algorithm based on subspace model
identification, which we call the robust SIANC algorithm.

4.6 Practical demonstration on a vibrating plate

The vibrating plate considered in Section 3.6.2 on page 68 has been used again,
now to validate the Cautious Wiener design method in combination with IMC to
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Table 4.1: Robust SIANC algorithm to estimate the robust (feedback) controller

1. Estimate models {Ĝk
eu}pk=1 under p conditions;

2. Estimate average model Ĝeu = 1
p

∑p
k=1 Ĝk

eu and the spectral factor ∆̂Geu

such that ∆̂G
∗
eu∆̂Geu = 1

p

∑p
k=1(Ĝ

k
eu − Ĝo

eu)∗(Ĝk
eu − Ĝo

eu);

3. Estimate model Ĝo
es,co (using measurements under p conditions);

4. Choose ρ and calculate inner-outer factorization of Ĝaug
eu =

[
Ĝo

eu
√

ρ∆̂Geu

]
;

5. Estimate model ̂[Gaug∗
eu,i1G

o
es,co]+;

6. Estimate (reduced order) filter Ĝaug−1
eu,o

̂[Gaug∗
eu,i1G

o
es,co]+Ĝ−1

es,co;

7. Apply controller which consists of Wiener filter

Ĝaug−1
eu,o

̂[Gaug∗
eu,i1Ges,co]+Ĝ−1

es,co in closed loop with internal model Ĝo
eu

(in output-normal form).

account for the feedback. The vibrating plate is controlled under two different
operating conditions: without and with additional mass, of ≈6% of the plate mass,
mounted on the plate at the place between the 4 sensors, see Figure 4.4. The mass
variation was such that using the nominal design of Chapter 3 did not stabilize the
closed loop.

Identification of the model Go
eu and the uncertainty ∆̃Geu. Under both

conditions a state-space model Ĝi
eu, i = 1, 2 of the secondary path was estimated

using the PO-MOESP subspace model identification method [181] using band lim-
ited white noise as the excitation signal. Here, a short description of the iden-
tification procedure is given, for a more detailed description of the procedure to
identify models for active control applications see [179]. Two input/output data
sequences each of 14000 samples (i.e. a measurement of 7 sec.) were recorded, one
for identification and the other for validation of the model. Both 4-inputs 4-outputs
models Ĝ1

eu and Ĝ2
eu are of order 80 and accurately model the dynamics of the sec-

ondary path without and with additional mass mounted on the plate respectively.
A measure of the accuracy of the model is the Variance Accounted For (VAF),
which was defined by (3.16) on page 64. Table 4.2 gives the VAF values obtained

by Ĝi
eu, i = 1, 2 and Ĝo

eu ≈ (Ĝ1
eu + Ĝ2

eu)/2 on validation data measured under
both conditions with and without additional mass. It can be concluded, that the
model obtained under no additional mass condition is not accurate anymore un-
der the additional mass condition and visa versa. The average model Ĝo

eu models
both conditions much better, but still has significant model errors for which the
controller should be robust.
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Figure 4.4: Schematic picture of the vibrating plate setup with mass variation.

Table 4.2: VAF values (%) obtained by Ĝi
eu, i = 1, 2 and Ĝo

eu on validation data
for the conditions with and without additional mass.

output 1 output 2 output 3 output 4

V AF (yno mass, Ĝ
1
euu): 99.76 99.79 99.73 99.77

V AF (ywith mass, Ĝ
1
euu): 81.77 87.58 82.88 88.28

V AF (yno mass, Ĝ
2
euu): 83.10 87.68 84.74 88.09

V AF (ywith mass, Ĝ
2
euu): 99.72 99.78 99.73 99.77

V AF (yno mass, Ĝ
o
euu): 95.39 96.66 95.76 96.71

V AF (ywith mass, Ĝ
o
euu): 95.03 96.63 95.24 96.76

Figure 4.5(a) shows the largest singular value of Ĝi
eu(e−j2πf/fs), i = 1, 2, which

shows that the first and the fourth resonance frequencies significantly change in
case an additional mass is mounted. The average secondary path model Ĝo

eu and

the model error model ∆̂Geu are estimated as described in Section 4.2.3. The
average model Ĝo

eu has order 80, and ∆̂Geu has order 50. Figure 4.5(b) shows the

largest singular value ‖∆̂Geu(e−j2πf/fs)‖∞. It is clearly seen, that the model error
is depending on the frequency.

Estimation of the average spectral factor of the disturbance. The spectral
factor Ges,co of the disturbance signal changes when an additional mass is mounted
on the vibrating plate. Therefore, like in modeling the secondary path, an average
model of the spectral factor Go

es,co has been estimated by averaging the measured

disturbances under both conditions. The estimated spectral factor model Ĝo
es,co

has order 40. The filter Ĝo−1
es,co is an approximation of the whitening filter for the

disturbance signal. Figure 4.6 shows the spectra of the disturbance signal of output
1 (dashed) and the spectrum obtained by using the whitening filter Ĝo−1

es,co (solid)
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Figure 4.5: Maximal singular value of estimated model with and without additional
mass (a) and their difference (b).
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for the average disturbance, the measured disturbance without additional mass and
the measured disturbance with additional mass respectively.

From these figures it can be concluded that Ĝo−1
es,co indeed approximately whitens

the disturbance signal under both conditions. However at 300Hz and 600Hz there
are still resonances in the whitened disturbance signal, which are due to the fact
that the spectrum of the disturbance signal differs under both conditions. At high
frequencies, above ≈ 700Hz, the spectrum of the disturbance signal falls down.

Robust controller estimation and validation. The robust controller was de-
termined in two different ways. One way is to minimize the nominal cost-function
with additional input weighting, hence without additionally filtering the input.
This is equivalent to minimizing the robust cost-function (4.33) on page 85 and

setting ∆̂Ges = ∆̃Grs = 0 and replacing ∆̃Geu by just
√

ρImu
. The other way is

the method is based on the Cautious Wiener approach for feedback systems as out-
lined in Section 4.5. In this approach, the control signal is filtered with

√
ρ∆̂Geu to

reduce the control effort in the frequency regions where the uncertainty is large. In
both methods the value of ρ > 0 was varied to increase (and decrease) robustness.

Like in the design of the nominal controller, the order of the robust controllers
was reduced to 80 by means of solving an identification problem. Figure 4.7(a)
shows the measured average reduction in dB’s over all 4 outputs versus ρ obtained
by the controller determined without frequency dependent regularization for the
case without (o’s) and with (+’s) additional mass. For ρ ≥ 0.13 it is observed that
the closed loop was stabilized by the controller. Figure 4.7(b) shows the measured
average reduction in dB’s over all 4 outputs versus ρ obtained by the controller
determined with frequency dependent regularization also for the case without (o’s)
and with (+’s) additional mass. In this figure, ρ is scaled with a factor 33 for
visualization reasons. The maximum performance is obtained for 33ρ = 5, ..., 10 for
the cases with and without additional mass. Note, that for maximum performance,
the weighting 33ρ > 1 to increase stability robustness.

Comparing both figures, it is concluded that using the frequency dependent
regularization as in the Cautious Wiener design method may yield better perfor-
mance. This is also what is expected, because the reduction of the control effort is
emphasized only at the critical frequencies (i.e. where the uncertainty is large).

4.7 Conclusions

In this chapter, the model uncertainty description has been considered as a stochas-
tic variable, with zero mean and known, frequency dependent, covariance. The
covariance is modeled by means of a (co-)spectral factor, given in state-space de-
scription. Based on this model uncertainty description the robust feedforward
controller —Cautious Wiener filter— is design by minimizing the mean-squared
error averaged over the distribution of the model uncertainty. In this way, the
average performance is optimized.

It has been shown that the magnitude of the controller is reduced at those fre-
quencies where the uncertainty in the detector path Grs and secondary path Geu

is large, such that the contribution of the uncertainty to the residual disturbance
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(a) Average disturbance and whitened.
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(b) Disturbance without additional mass
and whitened.

0 200 400 600 800 1000
10

−4

10
−3

10
−2

10
−1

10
0

Frequency [Hz]

P
ow

er
 s

pe
ct

ra
l d

en
si

ty

disturbance
whitened disturbance

(c) Disturbance with additional mass and
whitened.

Figure 4.6: Spectrum of disturbance at output 1 under various conditions (dashed)
and pre-whitened (solid).
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Figure 4.7: Average performance over all outputs (dB) versus regularization pa-

rameter ρ without (a) and with (b) weighting with ∆̂Geu for the case without
additional mass (o’s) and with additional mass (+’s).

is reduced. Furthermore, the uncertainty on Grs acts in the same way as measure-
ment noise on the reference signal which power spectrum is equal to the frequency
dependent covariance of ∆Grs. Dually, the uncertainty in Geu acts in the same
way as adding control effort weighting (prefiltered with the co-spectral factor of
the frequency dependent covariance of ∆Geu) to the nominal cost-function.

The control-relevant identification methods of Chapter 3 have been extended to
estimate the robust feedforward controller. Furthermore, for the feedback applica-
tion using the IMC compensation, it has been shown, using a small gain argument,
that the stability robustness of the closed loop has been improved.

Finally, the robust controller design method was illustrated on a MIMO vi-
brating plate experimental setup without and with additional mass. The nominal
controller of Chapter 3 did not stabilize the closed loop. By introducing suffi-
cient control weighting the closed-loop was stabilized. It has also been shown that
weighting the control signal with the probabilistic model error model could lead to
a less conservative controller and hence better performance could be obtained.

In Chapter 6 the robust controller design approach taken in this chapter, has
been used to improve the robustness of the Filtered-X LMS and the Preconditioned
Filtered-X LMS algorithms.
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Chapter 5

Convergence Analysis of

Filtered-U LMS

5.1 Introduction

The Filtered-U LMS (FuLMS) algorithm, proposed by Eriksson et al. [49] for ac-
tive noise control applications with acoustical feedback, adapts the coefficients of
an infinite impulse response (IIR) controller. The motivation of Eriksson et al.
was using an adaptive transferfunction model, the autoregressive behavior of the
denominator would compensate for the acoustical feedback. The algorithms can be
applied for feedforward applications as well. For example, an IIR controller is pre-
ferred over an FIR controller in case the optimal controller has one or more poles
close to the unit circle, which yields a very long impulse response of the optimal
controller. The FuLMS algorithm is based on the LMS algorithm for adaptive IIR
filtering proposed by Feintuch [50]. However, due to the non-quadratic nature of
the cost function to be minimized in case of updating an IIR filter, convergence to
a local minimum might occur, as illustrated in [84] (see also [157]).

The convergence of the algorithm proposed by Feintuch, which is a pseudo lin-
ear regression (PLR), is analyzed by various approaches, see [106] for stochastic
approaches and [144] for a deterministic approach using the small-gain theorem.
A well known approach to derive conditions for global convergence of PLR’s was
proposed by Ljung in [101,102] and is referred to as the ordinary differential equa-
tion (ODE) method. Using this method, the main condition for global convergence
of PLR’s is that a certain transfer function should be strictly positive real (SPR).
In [187] the ODE method has been applied to derive conditions for global conver-
gence of the FuLMS algorithm (see also [123] and for the multiple-channel case
see [125]) for feedforward control applications1. To use the ODE method it was
assumed that there exists a controller which yields perfect cancellation. This as-
sumption is equivalent to the assumption that the system is in the model set,
which is assumed in the analysis of recursive identification methods using the ODE

1Note, that the derivation of conditions for global convergence of the FuLMS algorithm for
feedback applications is still an open question, as pointed out in [168], c.f. the discussion in
Section 5.3 below.
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method [106]. However, in most AC applications perfect cancellation is not achiev-
able, due to pure delays and non-minimum phase zeros in the system, which are
often present in real situations.

The main contribution of this chapter is to show, that the assumption requiring
perfect cancellation is not necessary to analyze the convergence of the FuLMS
algorithm via the ODE method. The relaxation of the assumptions, made in the
convergence analysis in [123,125,187], supports the practical evidence known by the
practical engineer, that the FuLMS algorithm can even converge when canceling the
primary noise is not perfectly possible. This new global convergence result is based
on the analysis of the Causal Wiener filter, which yields optimal performance in
the mean square error sense (in case of no intrinsic feedback). The main step in the
derivation is to show that the residual disturbance obtained by the Causal Wiener
filter is stochastically independent of the regression vector, which is necessary to
apply the ODE method.

Though the FuLMS algorithm converges to the global minimum under certain
conditions presented in this chapter, its convergence rate can be very slow. The
structure of the Causal Wiener filter suggests methods of preconditioning to in-
crease the convergence speed of the FuLMS algorithm. For FxLMS it can be shown
that preconditioning increases the convergence rate by prewhitening the reference
signal and exploiting the inner-outer factorization of the secondary path transfer
function [45, 47, 127] (see also [160, 195] for comparable algorithms to improve the
convergence rate of FxLMS). Similar preconditioning can be used to increase the
convergence rate of the FuLMS algorithm. Therefore, the second contribution of
this chapter is the presentation of a preconditioned FuLMS algorithm, which can
increase the convergence rate significantly as demonstrated by simulation examples.

The chapter is organized as follows. Section 5.2 recapitulates the feedforward
active control problem, and discusses the cases of perfect cancellation by the Wiener
filter and optimal cancellation by the Causal Wiener filter. These results give in-
sight in the conditions for which perfect cancellation is not achievable, and on the
characteristics of the remaining residual signal. Section 5.3 recapitulates briefly
the existing conditions for global convergence of the FuLMS algorithm for feedfor-
ward control [187]. Section 5.4 shows that the non-trivial assumption of perfect
cancellation is not necessary and presents the new theorem for global convergence
of the FuLMS algorithm. Section 5.5 presents the preconditioned FuLMS algo-
rithm which can increase the convergence rate significantly as is demonstrated in
Section 5.6 by two simulation examples. Finally, Section 5.7 concludes the chapter.

The content of this chapter was published before in the publication in Signal
Processing [58].

5.2 Problem formulation

Feedforward control problem. Recall the feedforward control problem of Sec-
tion 2.2 on page 31, with measurement noise on the residual signal only, which is
again depicted in Figure 5.1. For reasons of simplicity, in this chapter we consider
only the single channel case, as considered in the convergence analysis in [187].



5.2 Problem formulation 105

+

+

+

+

PSfrag replacements

s(k) d(k)

e(k)

r(k) u(k)

y(k)

v(k)

W (q−1)

Ges(q
−1)

Geu(q−1)Grs(q
−1)

Figure 5.1: Block scheme of the feedforward active control problem with measure-
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Thus, the residual signal is given by

e(k) = Gess(k) + Geuu(k) + v(k) (5.1)

with the primary path Ges(q
−1) ∈ RH1×1

∞ (in the following, we will denote RH1×1
∞

just by RH∞) and Geu(q−1) ∈ RH∞, s(k) the zero-mean white noise disturbance
with unit variance, u(k) the control signal and v(k) zero-mean (possibly colored)
measurement noise uncorrelated with s(l) (for all l) and with variance σ2

v .
The reference signal is given by

r(k) = Grss(k) (5.2)

with the detector path Grs ∈ RH∞. Note that it is assumed that r(k) is not
distorted by feedback of u(k) via Gru. This means that the transfer function Gru

is not present in the system to be controlled, or it is compensated.
The control-law is given by

u(k) = Wr(k), (5.3)

with W ∈ RH∞. Then, the problem is to minimize the following cost function

J := E
(
e2(k)

)
, (5.4)

Perfect and optimal cancellation. If G−1
eu GesG

−1
rs is stable, then choosing W

to be
W = −G−1

eu GesG
−1
rs

(i.e. the Wiener filter) would yield perfect cancellation, i.e.,

e(k) = v(k). (5.5)

However, often G−1
eu GesG

−1
rs is not stable, as illustrated in Section 2.2.1 on page 31,

due to non-minimum phase zeros in Geu and Grs which are not canceled by non-
minimum phase zeros in Ges. In this case, the constraint that W should be stable
has to be explicitly taken into account in the optimization problem.

In Section 2.2.1 on page 31 the solution of this feedforward control problem has
been given by Theorem 2.1 on page 36 which provides the Causal Wiener filter.
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Here, we briefly recall the results for the single channel case. Let Ges, Grs, Geu ∈
RH∞ and both Grs(q

−1) 6= 0 and Geu(q−1) 6= 0 for any |q| = 1 (i.e. Grs and Geu

do not have zeros on the unit-circle in the complex plane). Then, the outer-inner
factorization of Grs and the inner-outer factorization of Geu exist and are given by

Grs = Grs,coGrs,ci

Geu = Geu,iGeu,o

respectively. Because Grs and Geu do not have zeros on the unit circle we have
that Grs,co and Geu,o are minimum phase and thus G−1

rs,co, G
−1
eu,o ∈ RH∞. Then

the Causal Wiener filter which minimizes (5.4) is given by

W = −G−1
eu,o[G

∗
eu,iGesG

∗
rs,ci]+G−1

rs,co (5.6)

(see Theorem 2.1).
By filling in the Causal Wiener filter in (5.3), and using (5.1),(5.2), we obtain

the expression for the optimal residual signal

e(k) = Geu,i[G
∗
eu,iGesG

∗
rs,ci]−Grs,cis(k) + v(k) (5.7)

Hence, in case perfect cancellation is not achievable by a causal controller, all the
contribution of s(k − i), −∞ < i <∞ to the value of J can not be removed.

The existing convergence result of the FuLMS algorithm in [187] (and [125] for
the multiple channel case), that will be discussed in the next section, is under the
condition of perfect cancellation, such that there exists a controller W such that
(5.5) will be obtained. In Section 5.4 we will show that the assumption of perfect
cancellation can be dropped and the convergence result can be extended to the
case perfect cancellation is not achievable.

5.3 Derivation Filtered-U LMS and existing con-

vergence result

Derivation Filtered-U LMS. The FuLMS algorithm has been proposed by
Eriksson et al. [49] to minimize (5.4) by an adaptive IIR controller. However, no
proof of convergence to the optimal controller has been given. In [187] conditions
were derived for the FuLMS algorithm to converge to the optimal controller in
case perfect cancellation is achievable. Also the case with acoustical feedback
Gru has been considered in [187]. However in the analysis in [187] for the case
with acoustical feedback, a wrong wrong regression vector has been used, which
consists of the reference signal not distorted by feedback of the control signal. This
undistorted reference signal is not available (except for the case the feedback is
perfectly canceled), as was pointed out by Sun and Meng in [168]. The wrong
convergence result for systems with acoustical feedback was cited in [46, 125] as
well as the convergence analysis presented in [58]. Though, the result in [58] has
been formulated for the general case with acoustic feedback Gru, and thus is not
correctly, the result still holds for the case without acoustic feedback, Gru = 0,
which will be discussed in Section 5.4. The problem of deriving sufficient conditions
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for global convergence of the FuLMS algorithm for the case Gru 6= 0 is still an open
and left for further research.

Therefore, in this section, we only recall this convergence result for the FuLMS
algorithm in [187] for the case without acoustic feedback.

Let the controller W in (5.3) be replaced by the time-varying controller

W (q−1, k) :=
A(q−1, k)

B(q−1, k)
=

a0(k) + a1(k)q−1 + · · ·+ aN (k)q−N

1 + b1(k)q−1 + · · ·+ bM (k)q−M
. (5.8)

Let us define the controller parameter vector θ(k) and the vector φ(k) by

θ(k) =
[

a0(k) a1(k) · · · aN (k) b1(k) · · · bM (k)
]T

(5.9)

φ(k) =
[

r(k) r(k − 1) · · · r(k −N) u(k − 1) · · · u(k −M)
]T

(5.10)

respectively. In the following, we will assume that N and M are, such that the
optimal controller (5.6) is contained in the structure given by (5.8). This means,
that the optimal controller can be written as

W (q−1) =
Ao(q−1)

Bo(q−1)
=

ao
0 + ao

1q
−1 + · · ·+ ao

Nq−N

1 + bo
1q

−1 + · · ·+ bo
Mq−M

. (5.11)

Then, the optimal parameter vector is defined as

θo =
[

ao
0 ao

1 · · · ao
N bo

1 · · · bo
M

]T
.

Now, the control signal u(k) can be written as

u(k) = φT (k)θ(k).

Further, it can be shown, see e.g. [187], that the gradient (5.4) with respect to the
controller parameters θ(k) is (approximately) given by

∇θ(k)J = 2E

({
Geu(q−1)

1

B(q−1k)
φ(k)

}
e(k)

)
.

Note, that this gradient is clearly a non-linear function of the controller coefficients
θ(k), hence local minima might exist. In the FuLMS algorithm the gradient is
approximated by neglecting the expectation operator E (.) which results in an LMS-
type algorithm and neglecting the filtering with 1/

(
B(q−1, k)) which results in a

PLR-type algorithm. Hence, the gradient is approximated as

∇̂θ(k)J = 2
(
Ĝeuφ(k)

)
e(k), (5.12)

where Ĝeu models the secondary path Geu. Now, the FuLMS update-equation for
the controller-coefficients is given by

θ(k + 1) = θ(k)− γ(k)
(
Ĝeuφ(k)

)
e(k), (5.13)

with γ(k) a positive adaptation gain.
The approximation of the gradient (5.12) significantly reduces the complexity

of the update-equation. However, this approximation is valid only if the negative
gradient is pointing downward on the average, such that on the average the cost
function will be minimized and convergence will be obtained. To satisfy this,
sufficient conditions are given in the following (Theorem 5.1 and 5.2).
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Existing convergence result. Ljung’s ODE method to prove convergence of
PLR’s to their global optimum was used in [187] to analyze the convergence of
the FuLMS algorithm. In order to guarantee that the residual signal e(k) is un-

correlated with the regression vector Ĝeuφ(k), which is a necessary assumption to
apply Ljung’s ODE method, it was assumed that perfect cancellation is achievable.
The FuLMS convergence theorem proven in [187] is summarized in the following
theorem.

Theorem 5.1 (Convergence of FuLMS [187]) Let, N and M be such that the
optimal controller (5.11) is contained in the adaptive filter structure (5.8). Then,
under the following conditions:

1. perfect cancellation is achievable, i.e. G−1
eu GesG

−1
rs ∈ RH∞;

2.
Geu

B0Ĝeu

is SPR

3. γ(k)→ 0 for n→∞;

4. persistence of excitation in the reference signal r(k) specified in [101];

5. regularity and boundedness conditions specified in [101];

by Ljung’s ODE Theorem [101], the FuLMS algorithm (5.13) converges with prob-
ability one to the unique equilibrium point θo.

In [187] assumption (1) was formulated slightly differently. Namely, it was stated
that the primary path Ges needs to be given by Geu(−W )Grs, with W ∈ RH∞.
Then [187] shows that the adaptive controller will converge to the optimal controller
A0/B0. This controller yields perfect cancellation, because A0 and B0 are such that
Geu(−W )Grs = Ges and W ∈ RH∞, and thus G−1

eu GesG
−1
rs ∈ RH∞.

Assumption (4) states that γ(k) vanishes. This assumption is common in
asymptotic convergence analysis, see also [101].

In the next section we will show, that the first assumption in Theorem 5.1 can
be omitted.

5.4 Convergence of FuLMS when perfect cancel-

lation is not achievable

In Section 5.2 we inferred that the optimal performance was completely deter-
mined by the Causal Wiener filter (the intrinsic feedback was compensated for by
IMC). By exploiting the structure of the Causal Wiener filter, global convergence
of the FuLMS algorithm can be proven also for the case perfect cancellation is not
achievable, as shown in the proof of the next theorem.

Theorem 5.2 (General convergence of FuLMS) Let, N and M be such that
the optimal controller (5.11) is contained in the adaptive filter structure (5.8).
Then, under the following conditions:

1. Ĝeu = Geu,iĜeu,o with Ĝeu,o ∈ RH∞;
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Figure 5.2: Block scheme of the adaptive Active Control problem with decomposed
plant.

2.
Geu

B0Ĝeu

is SPR;

3. γ(k)→ 0 for n→∞;

4. persistence of excitation in the reference signal r(k) as specified in [101];

5. regularity and boundedness conditions specified in [101];

by Ljung’s ODE Theorem [101], the FuLMS algorithm (5.13) converges with prob-
ability one to the unique equilibrium point θo.

Proof: We show that the ODE method can be used to prove global convergence of
W (q−1, k). Crucially, to apply the ODE method is that the optimal residual signal

e(k) given by (5.7) is uncorrelated with the regression vector Ĝeuφ(k). To satisfy
this constraint in the recursive system identification configuration, it is usually
assumed that the system is in the model set and there is no correlation between
the measurement noise and the input of the system. That the optimal residual
signal is uncorrelated to the regression vector, also for the case perfect cancellation
is not achievable, is shown in the following. The proof can be completed similarly
to the proof given in [187].

First, note that because Grs,ci and Geu,i are unitary, we can decompose Ges in
the following way

Ges = Geu,i[G
∗
ei,iGesG

∗
rs,ci]+Grs,ci + Geu,i[G

∗
eu,iGesG

∗
rs,ci]−Grs,ci,

and thus the residual signal e(k) can be written as (cf. Figure 5.2)

e(k) = Geu,i[G
∗
eu,iGesG

∗
rs,ci]+Grs,cis(k) + Geu,i[G

∗
eu,iGesG

∗
rs,ci]−Grs,cis(k)+

+ Geu,iGeu,oWGrs,coGrs,cis(k) + v(k). (5.14)

By filling in the Causal Wiener filter (5.6) in (5.14), the first and the third terms
in (5.14) cancel each other, which yields the optimal residual error (cf. Eq. (5.7))

e(k) = ξ(k) + v(k), (5.15)
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with ξ(k) = Geu,i[G
∗
eu,iGesG

∗
rs,ci]−Grs,cis(k).

It is obvious that v(k) and Ĝeuφ(k) are uncorrelated. To show that ξ(k) and

Ĝeuφ(k) are independent, i.e.

E
(
(Ĝeuφ(k))ξ(k)

)
= 0,

we have to show that E
(
{Ĝeur(k − i)}ξ(k)

)
= 0, ∀i ≥ 0.

Because Ĝeu = Geu,iĜeu,o and E
(
s2(k)

)
= 1, we have

E
(
{Ĝeur(k − i)}ξ(k)

)
=

= 1
2π

π∫
−π

e−jωiGeu,iĜeu,oGrs,coGrs,ciG
∗
rs,ci[G

∗
eu,iGesG

∗
rs,ci]

∗
−G∗

eu,idω,

= 1
2π

π∫
−π

e−jωiĜeu,oGrs,co[G
∗
eu,iGesG

∗
rs,ci]

∗
−dω.

Because [G∗
eu,iGesG

∗
rs,ci]− is anti-causal [G∗

eu,iGesG
∗
rs,ci]

∗
− is causal, but has no

direct feed through. Thus there exists a causal filter F (q−1) such that

[G∗
eu,iGesG

∗
rs,ci]

∗
− = q−1F.

Hence

E
(
{Ĝeur(k − i)}ξ(k)

)
=

1

2π

π∫

−π

e−jω(i+1)Ĝeu,oGrs,coFdω.

Since Ges, Grs, Geu, Ĝeu ∈ RH∞ and thus have no poles on the unit-circle,
Ĝeu,oGrs,oF has no poles on the unit-circle. Hence, Ĝeu,oGrs,oF can be written as
a Laurent series (see, e.g., [143])

Ĝeu,oGrs,oG =

∞∑

i=−∞
γiq

i.

Because Ĝeu,oGrs,oF is causal, γi = 0, ∀i > 0. Furthermore, we have

1

2π

π∫

−π

e−jω(i+1)Ĝeu,oGrs,coFdω = γi+1.

Combining these results, we get

E
(
{Ĝeur(k − i)}ξ(k)

)
= γi+1 = 0, ∀i ≥ 0.

Thus, the optimal residual signal (5.15) is uncorrelated with the regression vector

Ĝeuφ(k). Therefore, the ODE method can be used as in [187] by considering ξ(k)
just as additional measurement noise. By following the same reasoning as in [187]
a differential equation can be derived which describes the evolution of the adaptive
controller coefficients θ(k). Under conditions (2)–(4) in the theorem, especially the
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SPR condition, it is shown that the differential equation has a unique stationary
point in θo which is also stable. Hence, θ(k) converges to θo. �

Modification of Ĝeu,o can be used as an instrument to attempt to get the SPR
condition in assumption (2) satisfied. This was also stated in [187]. An alternative
is to filter the residual signal (see, e.g., [157]), because then the secondary path
is also altered. However, in this case the variance of the filtered residual signal is
minimized. This is not equivalent to the minimization of the variance of the actual
(unfiltered) residual signal, and thus may yield a biased solution.

5.5 The preconditioned FuLMS algorithm

By Theorem 5.2 we know under which conditions the FuLMS algorithm converges to
the Causal Wiener filter. However, the rate of convergence can be extremely slow,
which is illustrated by the simulation examples in Section 5.6. For the Filtered-X
LMS (FxLMS) algorithm, in [45, 47] a prewhitening and the use of the inner-
outer factorization of the secondary path transfer function were proposed in a
FIR/frequency domain context to increase the convergence rate. Similar precondi-
tioning can be applied to increase the convergence rate of the FuLMS algorithm.
In the following, we will assume there is no intrinsic feedback or it has been com-
pensated.

Because it is assumed that Grs(q
−1) does not have any zeros on the unit circle,

we have that the power-spectrum of r(k) is given by

Φr(e
−jω) = Grs,co(e

−jω)Grs,co(e
−jω)∗ > 0, −π ≤ ω ≤ π,

and Grs,co minimum phase. Hence, G−1
rs,co ∈ RH∞ is a whitening filter for r(k).

Let

s′(k) = G−1
rs,cor(k) = Grs,cis(k),

then s′(k) is a white noise signal. By using the prewhitening filter G−1
rs,co the con-

vergence rate has become independent of the detector path. To make the conver-
gence rate also independent of the secondary path, the following adaptive controller
structure is proposed

W (q−1, k) = G−1
eu,o(q

−1)W ′(q−1, k)G−1
rs,co(q

−1), (5.16)

with

W ′(q−1, k) =
a′
0(k) + a′

1(k)q−1 + · · · a′
K(k)q−K

1 + b′1(k)q−1 + · · · b′L(k)q−L
.

K and L are the orders of the numerator and the denominator polynomials of
[G∗

eu,iGesG
∗
rs,ci]+ respectively. Note, that −[G∗

eu,iGesG
∗
rs,ci]+ is the optimal value

of W ′(q−1, k), cf. (5.6). Furthermore, note that the order of the numerator and
denominator polynomials of W ′(q−1, k) and the Causal Wiener filter (5.6) may
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Figure 5.3: Block scheme of the preconditioned adaptive Active Control problem
with decomposed plant.

differ (it can be shown, that in general the order of the Causal Wiener filter given
by (5.6) is two times larger than the order of [G∗

eu,iGesG
∗
rs,ci]+, cf. Appendix B).

Hence the number of adaptive filter coefficients for the preconditioned FuLMS
algorithm may be different for the FuLMS algorithm.

Applying the controller (5.16), the control problem is reduced to the control
problem illustrated in Figure 5.3. Let

θ′(k) :=
[

a′
0(k) a′

1(k) · · · a′
K(k) b′1(k) · · · b′L(k)

]T
,

φ′(k) :=
[

s′(k) s′(k − 1) · · · s′(k −K) −u′(k − 1) · · · −u′(k − L)
]T

,

with

u′(k) = W ′(k)s′(k)

u(k) = G−1
eu,ou

′(k).

Then the update equation of the preconditioned FuLMS algorithm is given by

θ′(k + 1) = θ′(k)− γ(k)[Geu,iφ
′(k)]e(k).

Hence, the vector φ′(k) has to be filtered only by the all-pass filter Geu,i.

Due to the nonlinearity of the update law given by the FuLMS algorithm, it
is very difficult to prove that the convergence rate of the preconditioned FuLMS
algorithm has been increased. Therefore, the increase of the convergence rate
for the preconditioned FuLMS algorithm has been demonstrated by simulation
examples in the next section.
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5.6 Simulations and experimental validation

5.6.1 An illustrative example

In the first example, the AC system is given by

Ges(q
−1) = 1+0.9q−1

1+0.5q−1 , Grs(q
−1) = 1−1.1q−1

1+0.5q−1 , Geu(q−1) = 1+1.1q−1

1+0.5q−1 ,

and Gru = 0. Note, that Grs and Geu have non-minimum phase zeros at 1.1
and −1.1 respectively and Ges has no non-minimum phase zeros at 1.1 and −1.1,
hence perfect cancellation is not achievable. The Causal Wiener filter (5.6) to
which the FuLMS should converge and the factor [G∗

eu,iGesG
∗
rs,ci]+ to which the

preconditioned FuLMS should converge are given by

−G−1
eu,o[G

∗
eu,iGesG

∗
rs,ci]+G−1

rs,co =
0.7491 + 0.9892q−1 + 0.3074q−2

1− 0.8264q−2
,

−[G∗
eu,iGesG

∗
rs,ci]+ =

0.9064 + 0.7438q−1

1 + 0.5q−1
.

The variance of the measurement noise is zero, i.e. σ2
v = 0. Then the optimal

value of the cost function (5.4) is J ≈ 0.2792 and the variance of the disturbance

is E
(
d2(k)

)
≈ 1.2133. With s(k) a white noise process, using Ĝeu = Geu, all

conditions in Theorem 5.2 for global convergence are satisfied, for FuLMS as well
as preconditioned FuLMS. For the SPR conditions this is illustrated by the Nyquist
plots of 1/Bo for FuLMS and preconditioned FuLMS in Figure 5.4(a) and 5.4(b)
respectively.

In the (preconditioned) FuLMS experiments the normalized (preconditioned)
FuLMS algorithm has been used, i.e. γ(k) in (5.13) is replaced by

γ(k) =
µ

||Ĝeuφ(k)||22
,

with the step size µ = 0.01. Figure 5.5(a) and 5.5(b) show the convergence of the
filter-coefficients over 1 · 106 and 1 · 104 samples for FuLMS and preconditioned
FuLMS respectively.

From the figures, it can be inferred that the filter coefficients using the FuLMS
and the preconditioned FuLMS indeed converge to the optimal values. This is
in agreement with Theorem 5.2. Note, that Theorem 5.1 does not hold in this
case, because perfect cancellation is not achievable. The value of the cost function
obtained by (preconditioned) FuLMS is calculated using the last 1 · 104 samples of
the residual signal. For the standard FuLMS algorithm we get

JFuLMS = E
(
e2(k)

)
≈ 1

104

106∑

n=106−104+1

e2(k) = 0.3016,

and for the preconditioned FuLMS algorithm we get

Jprecon. FuLMS = E
(
e2(k)

)
≈ 1

104

106∑

n=106−104+1

e2(k) = 0.2957.
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Figure 5.4: Nyquist plots of 1/Bo for FuLMS and preconditioned FuLMS illustrat-
ing the SPR condition.

These values are higher than the minimal value of the cost function, which can be
explained by the fact that the step size µ does not converge to zero but is fixed,
which results in misadjustment.

Furthermore, it can be concluded from Figure 5.5(a) and 5.5(b), that the con-
vergence rate of the preconditioned FuLMS algorithm is much faster than the
convergence rate of the standard FuLMS algorithm.

5.6.2 Acoustical duct system

In the second simulation experiment, the AC system is a 30th order model of the
acoustical duct used in Section 3.6.1 on page 64, see Figure 3.1 on page 65. The
model has been identified using the Subspace Model Identification method [181].
In the simulations the acoustical feedback has been compensated perfectly.

The Causal Wiener filter given by (5.6), for this system is a 60th order filter. The
reduction in decibels (dB’s) obtained by using this filter is 14.2dB. The optimal fil-
ter to which the preconditioned FuLMS should converge to, i.e. −[G∗

eu,iGesG
∗
rs,ci]+,

is a 30th order filter.
For the standard FuLMS and the preconditioned FuLMS algorithm, the SPR

condition in Theorem 5.2 is not satisfied, hence both algorithms may not converge
to the global minimum. In the simulations the filter order used in the standard and
the preconditioned FuLMS algorithm are chosen to be the same, both numerator
and denominator are of order 30. The cost function is estimated by the following
recursive filter

Ĵ(k) = αĴ(k − 1) + (1− α)e2(k), Ĵ(0) = e2(0),

with α = 0.999. Figure 5.6(a) shows the learning curves Ĵ(k) averaged over 100
experiments for the (normalized) FuLMS and preconditioned (normalized) FuLMS
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(a) Filter coefficients of FuLMS for 106

samples.
(b) Filter coefficients of preconditioned
FuLMS for 104 samples.

Figure 5.5: Convergence of the filter coefficients for FuLMS and preconditioned
FuLMS with µ = 0.01.

algorithm for 2 · 105 samples using a step size µ = 0.1. Figure 5.6(b) zooms in on
the first 1·104 samples. From these figures, it is also clear that the convergence rate
of the preconditioned FuLMS algorithm is improved compared with the standard
FuLMS algorithm.
An interesting fact is that after 1.4 · 105 samples the performance obtained by the
FuLMS algorithm is better than the performance of the preconditioned FuLMS
algorithm. Because the SPR conditions for global convergence of the FuLMS and
the preconditioned FuLMS algorithm are not satisfied, both may converge to local
minima. Hence, we may conclude that the preconditioned FuLMS algorithm has
been converged to a local minimum, which results in less disturbance rejection than
the (possibly local) minimum to which the FuLMS algorithm has converged.

Figure 5.6(a) and 5.6(b) also show the learning curves of the FxLMS algorithm
and the preconditioned FxLMS algorithm proposed in [47]. The order of the FIR
filters was chosen to be 60 such that the number of filter coefficients used in the
(preconditioned) FxLMS algorithm is the same as in the (preconditioned) FuLMS
algorithm. From these figures we may conclude, that the convergence rate of the
preconditioned FxLMS algorithm is largest.
Also the reduction obtained by the preconditioned FxLMS algorithm (10.9dB after
convergence) is better than the reduction of the other adaptive algorithms. Because
the preconditioned FxLMS algorithm minimizes a quadratic criterion, it converges
to the global minimum which is determined by the length of the FIR filter. However,
because the Causal Wiener filter has an IIR structure, optimal performance (14.2dB
reduction) could not be obtained by the preconditioned FxLMS algorithm as is also
clear from Figure 5.6(a).
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Figure 5.6: Learning curves (in dB) averaged over 100 experiments for the (normal-
ized) FuLMS and preconditioned FuLMS algorithm using a IIR filter with numer-
ator and denominator of order 30, and FxLMS and preconditioned FxLMS using
a FIR filter of order 60, all with µ = 0.1.

5.7 Conclusions

The structure of the optimal controller and the remaining residual noise have been
analyzed for Active Control (AC) applications. Insights from this analysis have
been used to generalize the convergence results of the Filtered-U LMS (FuLMS)
algorithm which were derived in [187] for the case perfect cancellation is not achiev-
able. It is shown that the regression vector used in the FuLMS algorithm is always
uncorrelated with the residual signal obtained by using the optimal controller (in
case the secondary path model contains the inner factor of the real secondary path).
Hence, SPR conditions for global convergence derived in [187] using Ljung’s ODE
method in the case with and without intrinsic (or acoustical) feedback, also hold
in the case perfect cancellation is not achievable.

We also proposed a preconditioned FuLMS algorithm which yields a consid-
erable increase of the convergence speed in an academic and a realistic acousti-
cal duct simulation experiment. The preconditioned FuLMS algorithm contains a
prewhitening filter of the reference signal and applies the inner-outer factorization
of the secondary path, as was proposed for the Filtered-X LMS algorithm in [47].



Chapter 6

Robust preconditioned

Filtered-X LMS

6.1 Introduction

The Filtered-X LMS (FxLMS) algorithm is a very popular algorithm for feedfor-
ward active noise and vibration control, because the implementation is simple and
its recursions are well studied (see e.g. [29, 46, 90, 145, 188], just to name a few).
In broadband applications the convergence rate of FxLMS may be poor due to
correlation in the regression vector. To overcome this problem, [45, 47] proposes a
preconditioning of the FxLMS (PFxLMS) algorithm, which removes all correlation
in the regression vector. This can increase the convergence rate significantly as
shown in [176] for a realistic active control problem.

However, in [45, 47, 176] it was also noted that regularization is necessary in
case the system has zeros on and/or close to the unit circle to reliably calculate the
prefilters and prevent large amplification of the preconditioning filters, which may
yield oversteering of e.g. the DA converters. An even more important problem is,
that undermodeling of and variations in the secondary path may yield instability
of the filter update algorithm if a particular well known strictly positive real (SPR)
condition is not satisfied [125,188].

The main focus of this chapter is to adjust the PFxLMS algorithm, without
allowing too much performance degradation, such that the stability of the filter
update algorithm is less sensitive to errors in the secondary path model. Stated
otherwise, our objective is to increase the stability robustness of the PFxLMS
update algorithm w.r.t. model errors.

In literature, two approaches are proposed to improve the robustness of the
update algorithm: 1. on-line secondary path modeling and 2. adjusting the adaptive
algorithm to relax the SPR condition. Both approaches have their advantages and
drawbacks. On-line secondary path modeling (see e.g. [90]) may keep track of
variations in the secondary path and may thus yield optimal performance even if
the secondary path varies. However, the computational complexity is increased and
injection of an auxiliary dither signal is usually necessary with the consequence of
reduced performance.

117
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Figure 6.1: Block scheme of the general multichannel feedforward active
control system, with mr reference, mu control and me residual signals.

An example of the second approach, is proposed in [124] where a model is
derived which satisfies the SPR condition for multiple secondary plant systems by
solving the so-called robust SPR problem. The method focuses on IIR filtering, but
can also be applied to FIR filtering. However, the set of multiple secondary plant
systems should satisfy a particular condition for solving the robust SPR problem
[124]. Furthermore, for every secondary plant system a different precondition filter
would be necessary.

An alternative method which relaxes the SPR condition is control effort weight-
ing. In [45,46] this was done by tuning a scalar parameter which weights the trace
of the control effort covariance matrix, and results in Leakage FxLMS/PFxLMS.
Besides the necessity of tuning a scalar regularization parameter, the method may
be too conservative.

The contribution of this chapter, is the derivation of the robust versions of both
FxLMS and PFxLMS in the framework of probabilistic robust filtering approach of
Chapter 4. The robust method uses a model uncertainty model of the secondary
path, which acts as a frequency dependent control effort weighting. As such the
method results in a generalization of standard control effort weighting and hence
a generalization of Leakage FxLMS/PFxLMS (cf. e.g. [46, 90]). It is shown that
the SPR condition is relaxed in a well motivated manner, and hence the stability
robustness of the update algorithm is increased. A simulation example shows that
this method yields better performance than Leakage FxLMS/PFxLMS.

The chapter is organized as follows. Section 6.2 derives the Robust FxLMS
(RFxLMS) algorithm and its new SPR condition for global convergence. Section 6.3
derives the Robust PFxLMS (RPFxLMS) algorithm, shows that large amplification
of the precondition filter is prevented and derives the SPR condition for RPFxLMS.
Section 6.4 illustrates the method by a simulation example.

This chapter has been published before in Signal Processing Letters, see [59].

6.2 Robust Filtered-X LMS

Consider Figure 6.1, which illustrates the feedforward active control problem
(acoustical feedback is neglected or assumed to be perfectly compensated by In-
ternal Model Control). Here, s(k) ∈ Rmr represents the signal from the distur-
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bance source and is assumed to be a zero mean white noise stochastic process
with E[s(k)sT (l)] = Imr

δ(k − l) ∀k, l, where δ(0) := 1, δ(k) := 0, n 6= 0. Let
RHme×mu∞ the set of all stable proper rational me ×mu transfer functions matri-
ces in the unit delay operator q−1 with real coefficients. Then the primary path,
the detector path and the secondary path are denoted by Ges(q

−1) ∈ RHme×mr∞ ,
Grs(q

−1) ∈ RHmr×mr∞ and Geu(q−1) ∈ RHme×mu∞ respectively. The adaptive feed-
forward controller is an mu×mr matrix with FIR filters of length nw and its `,mth

element is given by

W`m(q−1, k) =

nw−1∑

i=0

wi
`m(k)q−i

with wi
`m(k) ∈ R. For ease of notation, we define w`m(k) :=

[w0
`m(k) · · · wnw−1

`m (k)]T ∈ Rnw , w`(k) := [wT
`1(k) · · · wT

`mr
(k)]T ∈ Rnwmr and

W(k) := [w1(k) · · · wmu
(k)] ∈ Rnwmr×mu and the vector stacking of all con-

troller coefficients θ(k) := vec(W(k)) ∈ Rmunwmr . The input to the adaptive
filter is the reference signal r(k) ∈ Rmr , let φ(k) := [x1(k) · · · x1(k − nw +
1) · · · xmr

(k) · · · xmr
(k−nw +1)]T ∈ Rnwmr . Then the control signal u(k) ∈ Rmu

is given by
u(k) := W (q−1, k)r(k) = WT (k)φ(k)

The objective is to determine u(k) such that y(k) ∈ Rme , counteracts the distur-
bance signal d(k) ∈ Rme . The measured residual signal is corrupted with a zero
mean stochastic noise process v(k) ∈ Rme , with intensity σ2

v := tr E[v(k)vT (k)],
which is independent of s(k), i.e. E[v(k)sT (l)] = 0me×mr

, ∀k, l. The measured
residual e(k) ∈ Rme is given by

e(k) = Ges(q
−1)s(k) + Geu(q−1)u(k) + v(k)

Then, the FxLMS algorithm, which objective is to minimize ξ = tr E[e(k)eT (k)]
is given by

θ(k + 1) = θ(k)− γ(k)[ĜT
eu(q−1)⊗ φ(k)]e(k)

with ⊗ denotes the Kronecker matrix product, γ(k) ≥ 0 the step size. Using
Ljung’s [101] ordinary differential equation (ODE) method, [188] (see also [125])
shows that if γ(k) suitably vanishes, r(k) is persistently exciting and the following
SPR condition is satisfied

GT
eu(ejω)Ĝeu(e−jω) + ĜT

eu(ejω)Geu(e−jω) > 0, −π ≤ ω ≤ π (6.1)

then the associated ODE, which describes the asymptotic behavior of θ(k), is
asymptotically stable. Hence, θ(k) converges, with probability one, to its unique
global optimum [188]

θopt = −E
((

ĜT
eu ⊗ φ(k)

)(
GT

eu ⊗ φ(k)
)T)−1

E
((

ĜT
eu ⊗ φ(k)

)
d(k)

)

To increase the robustness of the FxLMS algorithm w.r.t. uncertainty in Ĝeu,
we may want to have a (probabilistic) model of the uncertainty. Here, we will
follow the idea of the probabilistic robust filtering approach proposed in [164]. We
assume that Geu can be modeled as a stochastic variable, such that

Geu(q−1) = Go
eu(q−1) + ∆Geu(q−1)
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with E
(
∆Geu(e−jω)∆GT

eu(ejω)
)

= Φ∆Geu
(e−jω) and E

(
Geu(e−jω)

)
= Go

eu(e−jω),

for −π ≤ ω ≤ π. E (.) denotes expectation over stochastic systems. Further, let
∆Geu be independent of Go

eu, Ges, Grs, s(k) and v(k) ∀n. The objective of the
robust filtering approach is to minimize

ξrob = tr E
(
E
(
e(k)eT (k)

))
(6.2)

By Parseval’s equality and the independence between ∆Geu and the other factors,

ξrob =
1

2π
tr

π∫

−π

(.)∗(Ges + Go
euWGrs) + G∗

rsW
∗Φ∆Geu

WGrsdω + σ2
v

=
1

2π
tr

π∫

−π

(.)∗(Gaug
es + Gaug

eu WGrs)dω + σ2
v

here (.)∗ indicates complex conjugate transpose of the following factor, Gaug
es =

[GT
es 0T

mu×J ]T , Gaug
eu = [GoT

eu ∆̃G
T

eu]T and ∆̃Geu ∈ RHme×mu∞ such that

∆̃G
∗
eu∆̃Geu = Φ∆Geu

. Now, let Ĝeu ∈ RHme×mu∞ and ∆̂Geu ∈ RHme×mu∞ be

models of Go
eu and ∆̃Geu respectively and Ĝaug

eu = [ĜT
eu ∆̂G

T

eu]T . Then the Robust
FxLMS (RFxLMS) algorithm is obtained by updating the filter coefficients in the
direction of (the LMS estimate of) the negative gradient direction of the robust
cost function ξrob. This yields the following RFxLMS update rule

θ(k + 1) = θ(k)− γ(k)[Ĝaug T
eu (q−1)⊗ φ(k)]

[
e(k)

∆̂Geu(q−1)u(k)

]

We observe, that the RFxLMS algorithm is identical to the FxLMS algorithm
with the secondary path model augmented by ∆̂Geu and the performance chan-
nels e(k) augmented by ∆̂Geuu(k). This additional term reduces the energy of
the control signal at frequencies where the uncertainty, i.e. Φ∆Geu

(e−jω), is large.

The uncertainty model ∆̂Geu can be obtained from e.g. identification of Ĝeu, see
also [103, 129, 164]. An other approach is by performing a series of identification

experiments under different secondary path conditions which yields Ĝeu as the
average model and ∆̂Geu as a stable spectral factor of the estimated covariance
Φ̂∆Geu

. In case, ∆̂Geu = βImu
with β > 0 a constant real scalar, the RFxLMS

algorithm can be reduced to the Leakage FxLMS algorithm (cf. e.g. [46, 90]).
To derive the SPR condition for the RFxLMS algorithm, we have to rewrite the

FxLMS SPR condition (6.1) for the augmented system, which yields

GT
eu(ejω)Ĝeu(e−jω) + ĜT

eu(ejω)Geu(e−jω) + 2∆̂G
T

eu(ejω)∆̂Geu(e−jω) > 0,

−π ≤ ω ≤ π (6.3)

Because, ∆̂G
T

eu(ejω)∆̂Geu(e−jω) = Φ̂∆Geu
(e−jω) ≥ 0 for −π ≤ ω ≤ π, the SPR

condition is relaxed, especially at frequencies where the magnitude of the uncer-
tainty model is large.
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6.3 Robust Preconditioned Filtered-X LMS

The robustness of the PFxLMS algorithm can be increased too by minimizing the
robust cost function (6.2). Like the preconditioning filters for the FxLMS algorithm
are factors of the Causal Wiener filter (see [45, 47]), the robust preconditioning
filters are factors of the Robust Wiener filter —called the Cautious Wiener filter
in [164]— which minimizes (6.2) and is given by

Wrob,opt = − (Gaug
eu,o)

−1[Gaug∗
eu,i Gaug

es G∗
rs,ci]+G−1

rs,co

with [.]+ the causality operator, Grs = Grs,coGrs,ci is the outer-inner factorization
of Grs and Gaug

eu = Gaug
eu,iG

aug
eu,o is the inner-outer factorization of Gaug

eu . Note,

that G−1
rs,co is a whitening filter for the reference signal and (Gaug

eu,o)
−1 inverts the

minimum phase part of the augmented secondary path (if Gaug
eu,o is non square

(Gaug
eu,o)

−1 denotes a right inverse).
Models of G−1

rs,co and (Gaug
eu,o)

−1 can be used to precondition the RFxLMS
problem by removing the correlation in the regression vector, which yields the
RPFxLMS algorithm:
RPFxLMS algorithm: The control law is given by

u(k) = (Ĝaug
eu,o(q

−1))−1ũ(k)

ũ(k) = W (q−1, k)r̃(k)

r̃(k) = (Ĝrs,co(q
−1))−1r(k)

and the update algorithm by

θ(k + 1) = θ(k) − γ(k)[(Ĝaug
eu,i(q

−1))T ⊗ φ̃(k)]

[
e(k)

Ĝaug
eu,i2(q

−1)ũ(k)

]
(6.4)

with φ̃(k) is defined similar to φ(k) but r(k) is replaced by r̃(k), and

∆̂Geu(Ĝaug
eu,o)

−1 = Ĝaug
eu,i2 equals the last me rows of Ĝaug

eu,i.

Note, that Ĝaug∗
eu,o Ĝaug

eu,o = Ĝ∗
euĜeu + ∆̂G

∗
eu∆̂Geu and thus the gain of (Ĝaug

eu,o)
−1

will be reduced where ∆̂G
∗
eu∆̂Geu > 0, which may prevent oversteering of e.g. the

DA converters.
Assuming Ĝ−1

rs,co = G−1
rs,co, which is such that E[r̃(m)r̃T (k)] = Imr

δ(m − k), it
can be proven that the autocorrelation matrix of the regression vector,

R = E
((

Ĝaug T
eu,i ⊗ φ̃(k)

)(
Ĝaug T

eu,i ⊗ φ̃(k)
)T)

equals the identity matrix ImuImr
. Therefore, under this condition all modes con-

verge at the same rate, which is determined by the step size γ(k).
Using the ordinary differential equation (ODE) method as in [188] the following

theorem on the convergence of RPFxLMS is obtained.

Theorem 6.1 (Convergence RPFxLMS) If γ(k) suitably vanishes, r(k) is
persistently exciting, the regularity conditions of the ODE theorem [101] are satis-
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fied and the following SPR condition holds

(
Ĝaug

eu,o(e
jω)
)−T

(
GT

eu(ejω)Ĝeu(e−jω) + ĜT
eu(ejω)Geu(e−jω)+

+ 2∆̂G
T

eu(ejω)∆̂Geu(e−jω)
) (

Ĝaug
eu,o(e

−jω)
)−1

> 0,

for − π ≤ ω ≤ π (6.5)

then the associated ODE, which describes the asymptotic behavior of θ(k), is
asymptotically stable. Furthermore, θ(k) converges, with probability one, to its
unique global optimum

θopt =

−E
((

ĜaugT
eu,i1 ⊗ φ̃(k)

)(
(GeuĜaug−1

eu,o )T ⊗ φ̃(k)
)T

+
(
ĜaugT

eu,i2 ⊗ φ̃(k)
)(

ĜaugT
eu,i2 ⊗ φ̃(k)

)T)−1

E
((

ĜaugT
eu,i1 ⊗ φ̃(k)

)
d(k)

)

Proof: The proof is along the same lines as in [188], but with augmented secondary
path and precondition filters. �

The SPR condition (6.5) for RPFxLMS is a weighted version of the SPR condi-

tion (6.3) for RFxLMS, with weighting function (Ĝaug
eu,o)

−1. If (Ĝaug
eu,o)

−1 is square
and full rank (which is usually the case), then the SPR condition for RPFxLMS
(6.5) can be simplified further to the SPR condition of RFxLMS (6.3). In the case

(Ĝaug
eu,o)

−1 is tall (i.e. if Ĝaug
eu has more columns than rows), (6.5) is less strict than

(6.3). Hence, if RFxLMS converges then RPFxLMS converges, provided the step
size is small enough.

Uncertainty in the detector path Grs can be taken into account similarly. But,
instead of augmenting the performance channels to deal with uncertainty in S, the
reference channels have to be augmented with an additional noise signal uncorre-
lated with s(k) and v(k) (cf. [48]). Furthermore, the same robustification method
can be used in the Adjoint FxLMS algorithms as in [45,47] and the (preconditioned)
FuLMS algorithm considered in Chapter 5.

6.4 Simulation example

The RPFxLMS algorithm is tested on a 1-dimensional acoustical duct simulation
model, discretized using a sampling rate of fs = 1 · 103Hz. The magnitude of the
secondary path Geu is depicted in Figure 6.2.

By varying the delay between 0 and 2 · 10−3s uncertainty is introduced in the
system such that the SPR condition does not hold anymore. Figure 6.3 shows
the value of Geu(ej2πf/fs)∗Ĝeu(ej2πf/fs) + Ĝeu(ej2πf/fs)∗Geu(ej2πf/fs) where the

difference in the delay between Geu and Ĝeu is 1 · 10−3s, from which it is clear
that the SPR condition does not hold for all frequencies. The covariance Φ∆Geu of
the uncertainty has been estimated by uniformly varying the delay between 0 and
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Figure 6.2: Magnitude of the secondary path system Geu.
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Figure 6.3: Upper: Geu(ej2πf/fs)∗Ĝeu(ej2πf/fs) + Ĝeu(ej2πf/fs)∗Geu(ej2πf/fs) for

f = 0, · · · , 500Hz. Lower: magnitude of the estimated uncertainty ∆̂Geu.

2 · 10−3s. The magnitude of the estimated spectral factor ∆̂Geu is also depicted in
Figure 6.3.

In the experiments the delay in the secondary path model has been varied, from
0 to 4·10−3s additional delay. Depending on the amount of additional delay the SPR
condition (6.1) does not hold anymore as has been illustrated in Figure 6.3. The

RPFxLMS algorithm has been applied for various choices of ∆̂Geu: 1. ∆̂Geu = 0,
i.e. the nominal case, 2. ∆̂Geu = 1.87 · 10−2, which is such that (6.5) just holds

for a delay of 1 · 10−3s, 3. ∆̂Geu = 4.27 · 10−2, which is such that (6.5) just holds

for a delay of 2 · 10−3s and finally 4. ∆̂Geu estimated via the covariance of the
model error Φ∆Geu

due to a delay uniformly distributed from 0 to 2 · 10−3s. In
all experiments, the normalized step size is chosen to be 0.1, the number of filter
coefficients nw = 400 and the measurement noise is absent (σ2

v = 0).

Figure 6.4 shows the reduction after 160s (if the algorithm converges it is usually
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Figure 6.4: Reduction of RPFxLMS after 160s obtained for various choices of
∆̂Geu, versus additional delay in Ĝeu.

converged after ≈30s, but 160s has been chosen to fully guarantee the algorithm is
converged). The nominal case (marked with ©) yields best performance between
0 − 0.3 · 10−3s, however the adaptive algorithm diverges for larger delays. Using
scalar regularization (marked with 5 and 4), the robustness can be improved, but
at the expense of significant performance. By estimating the uncertainty model
∆̂Geu via the covariance Φ∆Geu

with delay uniformly distributed between 0 and
2 · 10−3s (marked with �), the robustness of the update algorithm is increased
significantly without paying too much performance.

6.5 Conclusions

The robustness of the preconditioned FxLMS algorithm, proposed by Elliott et
al. is increased by following a probabilistic robust filtering method. The SPR
condition is relaxed by taking the model uncertainty in the secondary path model
explicitly into account. Furthermore, the gain of the precondition filter is reduced,
which may prevent oversteering problems.

The approach to increase the robustness of the (preconditioned) FxLMS algo-
rithm, can also be used to increase the robustness of the Adjoint FxLMS algorithms
as considered in [45, 47] and the (preconditioned) FuLMS algorithm considered in
Chapter 5.



Chapter 7

A Fast-array Kalman

filter solution

7.1 Introduction

Active noise and vibration control (ANVC) systems usually deal with a large
amount of dominant, relatively weakly damped, resonance modes (in the order
of 10 to 50) and need controllers with a large impulse response to obtain good
disturbance rejection (in the order of 100-1000 taps). Furthermore, sampling rates
are often in the order of 1-10kHz to have sufficient control bandwidth. Besides, the
controller should be able to adjust for variations in the system, like temperature
variations. These constraints make ANVC a challenging control problem even in a
time of fast increasing computer power.

Because of its computational efficiency and robustness properties, the Filtered-
X LMS (FxLMS) algorithm is very popular in ANVC systems (see, e.g., [46]).
However, in applications with broadband disturbances, and especially in the case
of multiple channels, the convergence and tracking capacity of FxLMS is poor. This
problem has encouraged many researchers to develop alternatives to the FxLMS
algorithm, see, e.g., [18, 45,51,107,118,145,154].

Almost all algorithms proposed for ANVC are of the so-called filtered-X or
filtered-reference type. They rely on the assumption that the adaptive filter and
the controlled system, the so-called secondary path, may be interchanged. Ne-
glecting transients from initial states, this is true for systems that are constant in
time. However, since the adaptive filter varies in time this is not true anymore and
algorithms based on this assumption are inherently slowly converging. This obser-
vation has motivated the introduction of so-called modified filtered-X algorithms,
in which the disturbance is estimated from the residual signal and an internal
model of the secondary path, see [15, 51]. It is interesting to note that in [37]
(especially equation (13)) for deterministic disturbances, the modified filtered-X
algorithms, though not named this way, were already derived from a self tuning
regulator point of view. Although this is still an approximation in nonstationary
applications where the optimal controller is varying in time, the modified filtered-X
algorithms yield better convergence than the filtered-X algorithms, at the expense
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of increased computational load.

The problem of interchanging the adaptive filter and the secondary path was
addressed in [154] by reformulating the ANVC control problem as a state estimation
problem. The state to be estimated contains the unknown filter coefficients and
the unknown state of the secondary path system. However, this approach required
an estimate of the disturbance signal.

In this chapter, we reformulate the ANVC control problem also as a state-
estimation problem, but without using an estimate of the disturbance. The state-
estimation problem is solved by a Kalman filter, which has been chosen from an
optimality point of view. Uncertainty in the secondary-path state, due to initial
state uncertainty and/or noise, can be taken into account explicitly with improved
convergence. We also show that in case there is no uncertainty in the secondary-
path state, then the Kalman algorithm is equivalent to a modified filtered-RLS
algorithm. The analysis of the equivalence of both algorithms also shows that
the exponential forgetting needs to be applied to filtering the reference signal as
well. Furthermore, a fast-array implementation of the Kalman filter algorithm is
derived, which enables practical application of the algorithm. The derivation of
this fast algorithm is based on the observation that although the underlying state-
space model is not time-invariant, it is nevertheless a structured model in the sense
defined in [150,151].

The chapter is organized as follows. Section 7.2 formulates the estimation prob-
lem and presents the Kalman algorithm to solve this problem. Section 7.3 derives
the new fast-array implementation of the Kalman algorithm. Section 7.4 compares
the Kalman algorithm and a modified filtered-RLS algorithm and presents the con-
ditions for equivalence of both algorithms. Section 7.5 illustrates the (fast-array)
Kalman algorithm by simulation and Section 7.6 concludes the chapter.

7.2 The Kalman filter solution

7.2.1 The state estimation problem

Consider the active feedforward control problem illustrated in Figure 7.1. The
objective is to counteract the disturbance signal d(k) by a secondary signal y(k),
which yields the residual signal e(k). It is assumed, that the primary path can be
decomposed into a series connection of an optimal feedforward controller W o(q−1)
and a secondary path Geu(q−1), which contains the dynamics between the actu-
ators and the sensors. Usually this assumption is not satisfied, but the error due
to imposing this assumption can often be neglected. Assuming that the noise sig-
nals vs(k) and vm(k) are uncorrelated with the disturbance reference signal r(k),
it can be verified easily that the residual signal is minimized if the feedforward
controller Ŵk(q−1) equals W o(q−1). In this way, the feedforward control problem
is reformulated in an estimation context [154].

We assume that the unknown optimal controller is a FIR filter of length nw

W o(q−1) = w0 + w1q
−1 + · · ·wnw−1q

−nw+1. (7.1)
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Figure 7.1: A block diagram representation of a feedforward active control con-
figuration with a feedforward controller Ŵk(q−1) estimated by a Kalman filter to
minimize the residual disturbance e(k). The primary path is assumed to consist of
a series connection of the (unknown) optimal feedforward controller W o(q−1) and
the secondary path Geu(q−1).

and that Ŵk(q−1) has the same structure

Ŵk(q−1) = ŵ0(k) + ŵ1(k)q−1 + · · · ŵnw−1(k)q−nw+1. (7.2)

Let

wo =
[

w0 w1 · · · wnw−1

]T
, (7.3)

ŵ(k) =
[

ŵ0(k) ŵ1(k) · · · ŵnw−1(k)
]T

, (7.4)

rnw
(k) =

[
r(k) r(k − 1) · · · r(k − nw + 1)

]T
(7.5)

then optimal control signal is given by

uo(k) = rT
nw

(k)wo, (7.6)

and the actual control signal by

u(k) = − rT
nw

(k)ŵ(k). (7.7)

The secondary path Geu(q−1) will be described in state-space form. Usually, the
state dimension neu is high (in the range of 20 - 100) for acoustical or vibrational
systems. For this reason, using a FIR model of sufficient length to model the dy-
namics of Geu(q−1) can help lower the computational complexity, especially for well
damped systems. Because the FIR model structure is contained in the state-space
model structure, i.e., a FIR model is a state-space model with particular structure,
it is just a matter of straightforward computation to derive the expressions for
secondary path models with FIR structure. Other (canonical) parameterizations
contained in the state-space structure can be used as well.
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The noise signal vs(k) ∈ Rnv distorts the secondary-path state and vm(k) dis-
torts the measured output e(k). We assume vs(k) and vm(k) are both stationary
zero-mean white-noise signals that are independent of r(k) and satisfy

E



[

vs(k)

vm(k)

][
vs(l)

vm(l)

]T

 =

[
Q 0nv×1

01×nv
R

]
δkl, Q ≥ 0, R > 0 (7.8)

with δkl the Kronecker delta function (if k = l then δkl = 1, otherwise δkl = 0).
Note that the assumption that vs(k) is white is not restrictive, since this can always
be assured by incorporating the noise-shaping filter into the secondary path system.
We will not assume any conditions on the reference disturbance signal r(k). For
example, it may be white or colored noise, a sinusoid, stationary or nonstationary.

Let (A,Bu, Ce, Deu) be the state-space matrices that model the secondary path
Geu(q−1), then the disturbance d(k) is written as

θ1(k + 1) = Aθ1(k) + Buuo(k) + Gsvs(k), θ1(0) = θ1
0, (7.9)

d(k) = Ceθ
1(k) + Deuuo(k), (7.10)

and the secondary signal y(k) as

θ2(k + 1) = Aθ2(k) + Buu(k), θ2(0) = θ2
0, (7.11)

y(k) = Ceθ
2(k) + Deuu(k) (7.12)

with θ1(k), θ2(k) ∈ Rns . Since

e(k) = d(k) + y(k) + vm(k) (7.13)

and the state-space matrices in (7.9)-(7.10) and (7.11)-(7.12) are the same, we can
write

θ(k + 1) = Aθ(k) + Bu(uo(k) + u(k)) + Gsvs(k), θ(0) = θ0 (7.14)

e(k) = Ceθ(k) + Deu(uo(k) + u(k)) + vm(k) (7.15)

with θ0 = θ1
0 + θ2

0 and θ(k) = θ1(k) + θ2(k).
Substituting (7.6) and (7.7) into the state-space equations (7.14)-(7.15) gives

the final state-space description of the active control system considered in this
chapter

[
w(k + 1)

θ(k + 1)

]
=

[
λ−1/2Inw

0nw×ns

BurT
nw

(k) A

][
w(k)

θ(k)

]
−
[

0nw×nw

BurT
nw

]
ŵ(k)+

+

[
0nw×nv

Gs

]
vs(k),

[
w(0)

θ(0)

]
=

[
wo

θ0

]
(7.16)

e(k) =
[

DeurT
nw

(k) Ce

]
[

w(k)

θ(k)

]
−DeurT

nw
(k)ŵ(k) + vm(k) (7.17)
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where λ bounded by
0� λ ≤ 1

is an exponential forgetting factor; it is included to model variations in the opti-
mal filter coefficients to obtain better tracking capacity (see, e.g., [151]). In the
stationary case, where w(k) = wo, for all k, we set λ = 1. We could have included
(white-)noise into w(k + 1) with known covariance, which would often yield an
improved tracking capacity.

For ease of notation, we define

Ak =

[
λ−1/2Inw

0nw×ns

BurT
nw

(k) A

]
(7.18)

Bk =

[
0nw×nw

−BurT
nw

(k)

]
(7.19)

G =

[
0nw×nv

Gs

]
(7.20)

Ck =
[

DeurT
nw

(k) Ce

]
(7.21)

Dk = −DeurT
nw

(k) (7.22)

and the augmented state

x(k) =

[
w(k)

θ(k)

]
(7.23)

With these definitions, (7.16) and (7.17) are rewritten more compactly as

x(k + 1) = Akx(k) + Bkŵ(k) + Gvs(k) (7.24)

e(k) = Ckx(k) + Dkŵ(k) + vm(k). (7.25)

7.2.2 The Kalman filter

Since the Kalman filter provides a minimum variance estimate of the state at every
sampling instant given the model of the system and the covariances of the white-
noise signals vs(k) and vm(k), we will use this filter to estimate w(k) as well as
θ(k).

To apply the Kalman filter, we assume that the initial state is uncorrelated with
vs(k) and vm(k), i.e.,

E







x(0)

vs(k)

vm(k)







x(0)

vs(l)

vm(l)




T

 =




Π0 0nw+ns×nv
0nw+ns×1

0nv×nw+ns
Qδkl 0nv×1

01×nw+ns
01×nv

Rδkl


 ,

where

Π0 =

[
Πww

0 Πwθ
0

Πθw
0 Πθθ

0

]
> 0,

E(w(0)wT (0)) = Πww
0 , E(w(0)θT (0)) = Πwθ

0 = Πθw
0

T
, E(θ(0)θT (0)) = Πθθ

0 .
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The Kalman filter can be described in at least two forms: the time/measurement
update form and the prediction form [85]. The output of the time/measurement
update form is an estimate of x(k) given the measurements {e(0), e(1), · · · , e(k)},
denoted as x̂(k|k), together with its error covariance matrix Pk|k. The output
of the prediction form is an estimate of x(k + 1) given the same measurements
{e(0), e(1), · · · , e(k)}, denoted as x̂(k+1|k) or just x̂(k+1), together with its error
covariance matrix Pk+1|k or just Pk+1. Because, we need an estimate of w(k+1) to
calculate the control signal at the (next) iteration k + 1, we will use the prediction
form in the sequel.

The Kalman filter in prediction form is given by the following equations for
k ≥ 0:

x̂(0) = 0nw+ns×1, (7.26)

P0 = Π0, (7.27)

ε(k) = e(k)− Ckx̂(k)−Dkŵ(k), (7.28)

Re,k = R + CkPkCT
k , (7.29)

Kk = AkPkCT
k , (7.30)

x̂(k + 1) = Akx̂(k) + Bkŵ(k) + KkR−1
e,kε(k), (7.31)

Pk+1 = AkPkAT
k −KkR−1

e,kKT
k + GQGT . (7.32)

For further reference, we partition Pk similarly to Π0 as

Pk =

[
Pww

k Pwθ
k

P θw
k P θθ

k

]
. (7.33)

Note that using the definitions (7.18)-(7.23) and partitioning

Kk =

[
Kw

k

Kθ
k

]
, Kw

k ∈ Rnw×1, Kθ
k ∈ Rns×1, (7.34)

then expression (7.28) for the innovation ε(k), and expression (7.31) for the state-
estimate update equation x̂(k + 1) can be simplified to

ε(k) = e(k)− Ceθ̂(k), (7.35)[
ŵ(k + 1)

θ̂(k + 1)

]
=

[
λ−1/2ŵ(k)

Aθ̂(k)

]
+

[
Kw

k

Kθ
k

]
R−1

e,kε(k). (7.36)

The resulting Kalman filter algorithm, to solve the active control problem, is listed
in the first column of Table 7.1.

Now, the implementation of the Kalman filter using expressions (7.29), (7.30)
and (7.32) is computationally complex for most practical applications. For instance,
recursion (7.32) has at least O((nw + ns)

2) complexity, assuming that A is just a
shift matrix, which is the case when an FIR model is used for the secondary path
(if A has no structure at all, the complexity will be at least O(n3

s + (nw + ns)
2)).

In a future Section 7.4 we will show that by setting

Πwθ
0 = Πθw

0

T
= 0nw×ns

, Πθθ
0 = 0ns×ns

, and Q = 0nv×nv
,
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which assumes perfect knowledge of the secondary path initial state and vs(k) = 0
for all k ≥ 0, the Kalman algorithm simplifies to a modified Filtered-RLS algorithm.
However, this assumption is rather strong, and may degrade the performance of
the algorithm severely in case it is not satisfied, as will be illustrated by simulation
in Section 7.5.

For now we proceed to derive a fast-array implementation of the Kalman filter
algorithm by exploiting structure in the state-space matrices, thus reducing the
computational complexity down to O(nw + ns) per iteration.

7.3 The fast-array Kalman filter

7.3.1 The structure in the state-space model

We will base our derivation on [150], where a fast implementation of the Kalman
filter for certain time-varying systems with structure was derived. Consider the
definition of rnw

(k) in (7.5). It is clear that rnw
(k) and rnw

(k + 1) have nw − 1
entries in common but at shifted positions of each other. Let us define the shift-
matrix Znw

∈ Rnw×nw as the matrix with ones on its first subdiagonal and zeros
elsewhere. Then, we can write

rT
nw

(k) = rT
nw

(k + 1)Znw
+
[

01×nw−1 r(k − nw + 1)
]
.

Using this result, we are able to relate Ak and Ak+1 to each other as well as Ck and
Ck+1. In our case, G does not depend on k, but should satisfy a particular condition
given below. Though the state-space matrices Bk and Dk are also related to Bk+1

and Dk+1 we do not need this relation in the derivation of the fast-array Kalman
filter, since they determine the deterministic part of the state update which does
not influence the Kalman filter expressions (7.29)-(7.32). Note, that we already
exploited the structure in Bk and Dk in the equations (7.35) and (7.36).

To relate Ak and Ak+1, and Ck and Ck+1, we will first introduce the augmented
state-space system, which is equivalent to (7.24)-(7.25):

x̃(k + 1) = Ãkx̃(k) + B̃kŵ(k) + G̃vs(k) (7.37)

e(k) = C̃kx̃(k) + Dkŵ(k) + vm(k) (7.38)

where

Ãk =

[
λ−1/2Inw+1 0nw+1×ns

BurT
nw+1(k) A

]
, (7.39)

B̃k =

[
0nw+1×nw

−BurT
nw

(k)

]
, (7.40)

G̃ =

[
0nw+1×nv

Gs

]
, (7.41)

C̃k =
[

DeurT
nw+1(k) Ce

]
, (7.42)
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and the augmented initial state is given by

x̃(0) =




wo

0

θ(0)


 ∈ Rnw+1+ns . (7.43)

Because the (nw +1)th entry of x̃(k) is uncontrollable from the deterministic input
ŵ(k) as well as from the stochastic input vs(k), it will keep its initial zero value.
It can be verified easily using (7.37) that x̃(k) has a similar form, namely

x̃(k) =




w(k)

0

θ(k)


 , ∀k ≥ 0

and thus the output given by (7.38) is exactly the same as the output given by
(7.25). Because there is no uncertainty in the (nw + 1)th entry of x̃(0) we define

E
(
x̃(0)x̃T (0)

)
= Π̃0 =




Πww
0 0nw×1 Πwθ

0

01×nw
0 01×ns

Πθw
0 0ns×1 Πθθ

0


 ,

and it is clear that E(x̃(0)[vT
m(k) vs(k)]) = 0nw+1+ns×nv+1.

Now, let us define

Ψ =

[
Znw+1 0nw+1×ns

0ns×nw+1 Ins

]
(7.44)

then it is straightforward to verify that

Ãk+1Ψ + ∆a
k = ΨÃk, (7.45)

G̃ = ΨG̃, (7.46)

C̃k = C̃k+1Ψ + ∆c
k, (7.47)

∆a
k =

[
0nw+1×nw+1 0nw+1×ns[

0ns×nw
Bur(k − nw)

]
0ns×ns

]
, (7.48)

∆c
k =

[
01×nw

Deur(k − nw) 01×ns

]
, (7.49)

where (7.45)-(7.47) are, up to the ∆-terms, equal to (a special case of) the relations
in [150].

7.3.2 The fast-array iterations

The Kalman filter equations of the augmented system (7.37)-(7.38) are given by

̂̃x(0) = 0nw+1+ns×1, (7.50)

P̃0 = Π̃0, (7.51)

ε̃(k) = e(k)− C̃k
̂̃x(k)−Dkŵ(k), (7.52)
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R̃e,k = R + C̃kP̃kC̃T
k , (7.53)

K̃k = ÃkP̃kC̃T
k , (7.54)

̂̃x(k + 1) = Ãk
̂̃x(k) + B̃kŵ(k) + K̃kR̃−1

e,kε(k), (7.55)

P̃k+1 = ÃkP̃kÃT
k − K̃kR̃−1

e,kK̃T
k + G̃QG̃T . (7.56)

Because the augmented system (7.37)-(7.38) is equivalent to the original system
(7.24)-(7.25), the Kalman filter of the augmented system should provide the same
state-estimate, state-error covariance, and innovations. By straightforward com-
putation, it can be verified (e.g., by induction) that for all k ≥ 0:

P̃k =




Pww
k 0nw×1 Pwθ

k

01×nw
0 01×ns

P θw
k 0ns×1 P θθ

k


 ,

R̃e,k = Re,k,

K̃k =




Kw
k

0

Kθ
k


 .

Hence, we also have for all k ≥ 0:

̂̃x(k) =




ŵ(k)

0

θ̂(k)


 ,

ε̃(k) = ε(k).

The idea behind fast-array algorithms is to update the difference

dP̃k = P̃k −ΨP̃k−1Ψ
T

rather than P̃k itself. In many cases, depending on the choice of Π0, it can be
shown that dP̃k has a low rank α with α� (nw + 1 + ns) (in the next subsection,
we will exhibit a choice for Π0 such that α = 2). Hence, dP̃k, or a factorization for
it, can be updated very efficiently [150,151].

Let us define also the difference quantities

dR̃e,k = R̃e,k − R̃e,k−1,

dK̃k = K̃k −ΨK̃k−1.

Then, using (7.53), (7.54) and (7.56) together with relations (7.45)-(7.47) we get

dR̃e,k = C̃kdP̃kC̃T
k , (7.57)

dK̃k = ÃkdP̃kC̃T
k , (7.58)

dP̃k+1 = ÃkdP̃kÃT
k + ΨK̃k−1R̃

−1
e,k−1K̃

T
k−1Ψ

T − K̃kR̃−1
e,kK̃T

k . (7.59)

Suppose dP̃k can be factored as

dP̃k = L̃k−1Mk−1L̃
T
k−1,
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where L̃k−1 ∈ Rnw+1+ns×α and Mk−1 ∈ Rα×α for some α � nw + ns + 1. Then
it turns out that R̃e,k−1, K̃k−1 and L̃k−1 can be updated to R̃e,k, K̃k and L̃k as
follows. Multiply the pre-array on the left-hand side below by a transformation
Θk−1

[
R̃

1/2
e,k−1 C̃kL̃k−1

ΨK̃k−1R̃
−T/2
e,k−1 ÃkL̃k−1

]
Θk−1 =

[
R̃

1/2
e,k 01×α

K̃kR̃
−T/2
e,k L̃k

]
, (7.60)

so as to result in the 1×α zero block in the post-array on the right hand side. The
matrix Θk−1 is required to be Jk−1-unitary, i.e., it should satisfy

Θk−1Jk−1Θ
T
k−1 = Jk−1,

where

Jk−1 =

[
1 01×α

0α×1 Mk−1

]
.

This fact can be verified by ‘squaring’ the left- and the right hand sides of (7.60)
and using relations (7.57)-(7.59). By ‘squaring’ the left hand side of (7.60) we
obtain

[
R̃

1/2
e,k−1 C̃kL̃k−1

ΨK̃k−1R̃
−T/2
e,k−1 ÃkL̃k−1

]
Θk−1Jk−1Θ

T
k−1︸ ︷︷ ︸

=Jk−1

[
R̃

1/2
e,k−1 C̃kL̃k−1

ΨK̃k−1R̃
−T/2
e,k−1 ÃkL̃k−1

]T

=

[
R̃e,k−1 + C̃kL̃k−1Mk−1L̃

T
k−1C̃

T
k K̃T

k−1Ψ
T + C̃kL̃k−1Mk−1L̃

T
k−1Ã

T
k

ΨK̃k−1 + ÃkL̃k−1Mk−1L̃
T
k−1C̃

T
k ΨK̃k−1R̃

−1

e,k−1
K̃T

k−1Ψ
T + ÃkL̃k−1Mk−1L̃

T
k−1Ã

T
k

]
=

[
R̃e,k K̃T

k

K̃k ÃkdP̃kÃT
k + ΨK̃k−1R̃

−1
e,k−1K̃

T
k−1Ψ

T

]
.

And, on the other hand, by ‘squaring’ the right hand side of (7.60) we obtain

[
R̃

1/2
e,k 01×α

K̃kR̃
−T/2
e,k L̃k

]
Jk−1

[
R̃

1/2
e,k 01×α

K̃kR̃
−T/2
e,k L̃k

]T

=

=

[
R̃e,k K̃T

k

K̃k K̃kR̃−1
e,kK̃T

k + L̃kMk−1L̃
T
k

]
=

=

[
R̃e,k K̃T

k

K̃k K̃kR̃−1
e,kK̃T

k + dP̃k+1

]
.

Equality (7.60) then holds once we make the identification

dP̃k+1 = L̃kMkL̃T
k , with Mk = Mk−1. (7.61)



7.3 The fast-array Kalman filter 135

We thus conclude that if dP̃k has (low) rank α, then dP̃k+1 also has (low) rank α.
Furthermore, the matrix Mk in the factorization of dP̃k+1 is equal to Mk−1 and
thus we may set

M = Mk, and J =

[
1 01×α

0α×1 M

]
= Jk

for all k ≥ 0.
Now, the problem is to determine an initial factorization

dP̃0 = L̃−1ML̃T
−1,

with M ∈ Rα×α and α as small as possible. This problem will be solved in the
next subsection.

Note that the update equation (7.60) is independent of R, G and Q. These
parameters enter into the initialization of the algorithm.

7.3.3 Initialization

We now seek a matrix Π−1 such that the difference

P̃0 −ΨP̃−1Ψ
T = L̃−1ML̃−1

has low rank α � (nw + 1 + ns). Note that since we iterate beginning from
k = 0, we only need to know L̃−1 and M . In the following, we will assume the
prewindowed-data case, i.e.,

r(k) = 0, −nw − 1 ≤ k ≤ −1, (7.62)

and thus

Ã−1 =

[
λ−1/2Inw+1 0nw+1×ns

0ns×nw+1 A

]
, and C̃−1 =

[
01×nw+1 Ce

]
.

Then, according to (7.53), (7.54), (7.56) and

P̃k =




Pww
k 0nw×1 Pwθ

k

01×nw
0 01×ns

P θw
k 0ns×1 P θθ

k


 ,

we get

P̃0 = Ã−1P̃−1Ã
T
−1 − K̃−1R̃

−1
e,−1K̃

T
−1 + G̃QG̃T =

=




λ−1Pww
−1 0nw×1 λ−1/2Pwθ

−1 AT

01×nw
0 01×ns

λ−1/2AP θw
−1 0ns×1 AP θθ

−1A
T


+

−




λ−1/2Pwθ
−1 CT

e

0

AP θθ
−1C

T
e


 (R + CeP

θθ
−1C

T
e )−1




λ−1/2Pwθ
−1 CT

e

0

AP θθ
−1C

T
e




T

+
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+




0nw×nw
0nw×1 0nw×ns

01×nw
0 01×ns

0ns×nw
0ns×1 GsQGT

s


 .

For simplicity, we set the 1-2 and 2-1 blocks in P−1 to zero, i.e.,

P−1 =

[
Πww

−1 0nw×ns

0ns×nw
Πθθ

−1

]
=

[
Pww
−1 0nw×ns

0ns×nw
P θθ
−1

]
.

with Πww
−1 > 0 and Πθθ

−1 > 0 to be determined. Then, we get

P̃0 −ΨP̃−1Ψ
T =


λ−1

[
Πww

−1 0nw×1

01×nw
0

]
− Znw+1

[
Πww

−1 0nw×1

01×nw
0

]
ZT

nw+1

0ns×nw+1

0nw+1×ns

AΠθθ
−1A

T −AΠθθ
−1C

T
e (R + CeΠ

θθ
−1C

T
e )−1CeΠ

θθ
−1A

T + GsQGT
s −Πθθ

−1

]

Let us choose
Πww

−1 = δ · diag{λ, λ2, · · · , λnw}, (7.63)

which yields

λ−1

[
Πww

−1 0nw×1

01×nw
0

]
− Znw+1

[
Πww

−1 0nw×1

01×nw
0

]
ZT

nw+1 =

δ ·




1 01×nw−1 0

0nw−1×1 0nw−1×nw−1 0nw−1×1

0 01×nw−1 −λnw


 .

Furthermore, if the pair (A,Ce) is detectable, and (A,GsQ
1/2) is stabilizable, then

there exists Πθθ
−1 > 0, such that the discrete algebraic Riccati equation (DARE)

AΠθθ
−1A

T −AΠθθ
−1C

T
e (R + CeΠ

θθ
−1C

T
e )−1CeΠ

θθ
−1A

T + GsQGT
s −Πθθ

−1 =

= 0ns×ns
(7.64)

holds [85, Theorem E.6.2, p.786]. Note that to ensure the pair (A,GsQ
1/2) is

unit-circle controllable Q should be positive definite, Q > 0. Let Πww
−1 and Πθθ

−1

satisfy (7.63) and (7.64) respectively, then we have

P̃0 −ΨP̃−1Ψ
T = δ




1

0nw−1×nw−1

−λnw

0ns×ns


 , (7.65)

= L̃−1ML̃T
−1, (7.66)
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where

L̃−1 =
√

δ




1 0

0nw−1×1 0nw−1×1

0 λnw/2

0ns×1 0ns×1


 , M =

[
1 0

0 −1

]
.

Hence, we have obtained a factorization for dP̃0 with rank α = 2. Note that now
we have

J = (1⊕M) =




1 0 0

0 1 0

0 0 −1


 .

Due to the −1 in the 3-3 element of J , the transformations Θk−1 in (7.60) are
hyperbolic. For comments on the implementation and numerical accuracy of these
rotations, we refer to [149, Ch. 14], see, also [151, Section 2]. The resulting fast-
array implementation of the Kalman algorithm, is listed in the second column of
Table 7.1.

7.3.4 Comments on the extension to the MIMO case

In principle, the extension to the MIMO case is straightforward. Still we shall
comment on a few steps in the extension that need some care. Again a state-
space description similar to (7.16)-(7.17) can be derived. Let Nr be the number of
reference channels, r(k) ∈ Rmr , Nu be the number of control channels, u(k) ∈ RNu ,
and Ne be the number of residual channels, e(k) ∈ RNe . Then, the adaptive

feedforward controller Ŵk(q−1) is an Nu×Nr matrix with FIR filters of length nw;
its i, jth element is given by

Ŵ ij
k (q−1) = ŵij

0 (k) + ŵij
1 (k)q−1 + · · ·+ ŵij

nw−1(k)q−nw+1,

with ŵij
l (k) ∈ R. We define ŵij

nw
(k) = [ŵij

0 (k) · · · ŵij
nw−1(k)]T ∈ Rnw ,

ŵi
nw

(k) = [ŵi1
nw

(k)
T · · · ŵiNr

nw
(k)

T
]T ∈ RnwNr , Ŵnw

(k) = [ŵ1
nw

(k) · · · ŵNu
nw

(k)] ∈
RnwNr×Nu , and the vector stacking all controller coefficients ŵnw

(k) =

vec(Ŵnw
(k)) ∈ RnwNuNr . Further, let rnw

(k) = [r1(k) · · · r1(k − nw +
1) · · · rNr

(k) · · · rNr
(k − nw + 1)]T ∈ RnwNr . Then, the control signal u(k) is given

by

u(k) = − Ŵk(q−1)r(k) = −ŴT
nw

(k)rnw
(k)

= − vec(rT
nw

(k)Ŵnw
(k)INu

) = −
(
INu
⊗ rT

nw
(k)
)
ŵnw

(k), (7.67)

where in the last equality we made use of the matrix rule vec(ABC) = (CT ⊗
A)vec(B). Similarly, we define the vector stacking all optimal controller coefficients
wo

nw
so that

uo(k) =
(
INu
⊗ rT

nw
(k)
)
wo

nw
. (7.68)
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Table 7.1: Kalman algorithm in covariance and fast-array forms

Kalman covariance form Fast-array form

Assumptions:

0 � λ ≤ 1 idem



R > 0

Q ≥ 0





idem

Q > 0 such that the pair (A, GsQ1/2)

is unit-circle controllable;

the pair (A, Ce) is detectable

Π0 =


 Πww

0 Πwθ
0

Πθw
0 Πθθ

0


 > 0





Π−1 =


 Πww

−1 0nw×ns

0ns×nw Πθθ
−1


 > 0

with

Πww
−1 =

√
δ · diag{λ, λ2, · · · , λnw}, δ > 0

and Πθθ
−1 > 0 satisfies the DARE

Πθθ
−1 = AΠθθ

−1AT + GsQGT
s +

−AΠθθ
1 CT

e (R + CeΠθθ
−1CT

e )−1CeΠθθ
−1AT

r(k) = 0, for −nw− 1 ≤ k ≤ −1

(i.e., prewindowed data)

Initialization:




ŵ(0) = 0nw×1

θ̂(0) = 0ns×1

idem

rnw (−1) =
[

r(−1) · · · r(−nw)
]T

rnw+1(−1) = 0nw+1×1

P0 = Π0





L̃−1 =
√

δ




1 0

0nw−1×1 0nw−1×1

0 λnw/2

0ns×1 0ns×1




R
1/2
e,−1 = (R + CeΠθθ

−1CT
e )1/2

K
w
−1 = 0nw×1

K
θ
−1 = AΠθθ

−1CT
e R

−1/2
e,−1

Iterate for k ≥ 0:

rnw (k) =
[

r(k) rT
nw−1(k − 1)

]T
rnw+1(k) =

[
r(k) rT

nw
(k − 1)

]T





Ak =


 λ−1/2Inw 0nw×ns

BurT
nw

(k) A




Ck =
[

DeurT
nw

(k) Ce

]





Ãk =


 λ−1/2Inw+1 0nw+1×ns

BurT
nw+1(k) A




C̃k =
[

DeurT
nw+1(k) Ce

]

ε(k) = e(k) − Ceθ̂(k) idem




Kw

k

Kθ
k


 = Kk = AkPkCT

k

Re,k = R + CkPkCT
k

Pk+1 = AkPkAT
k − KkR−1

e,kKT
k + GQGT





Perform J-unitary rotation to make 1-2 block of

post-array zero, J = (I2 ⊕ −1), Θk−1JΘT
k−1 = J




R
1/2
e,k−1 C̃kL̃k−1



0

K
w
k−1

K
θ
k−1


 ÃkL̃k−1




Θk−1 =




R
1/2
e,k 01×2




K
w
k

0

K
θ
k


 L̃k





ŵ(k + 1)

θ̂(k + 1)


=


λ−1/2ŵ(k)

Aθ̂(k)


+


 Kw

k

Kθ
k


R−1

e,kε(k)


 ŵ(k + 1)

θ̂(k + 1)


 =


 λ−1/2ŵ(k)

Aθ̂(k)


+


 K

w
k

K
θ
k


R

−1/2
e,k ε(k)
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Combining (7.67) and (7.68) with the (MIMO) state-space description of the
secondary-path system (7.14)-(7.15) yields
[

w(k + 1)

θ(k + 1)

]
=

[
λ−1/2InwNuNr

0nwNuNr×ns

Bu

(
INu
⊗ rT

nw
(k)
)

A

][
w(k)

θ(k)

]
+

+

[
0nwNuNr×nwNuNr

−Bu

(
INu
⊗ rT

nw
(k)
)
]
ŵnw

(k) +

[
0nwNuNr×nv

Gs

]
vs(k),

[
w(0)

θ(0)

]
=

[
wo

nw

θ0

]

e(k) =
[

Deu

(
INu
⊗ rT

nw
(k)
)

Ce

]
[

w(k)

θ(k)

]
−Deu

(
INu
⊗ rT

nw
(k)
)
ŵnw

(k)+vs(k)

Like in Section 7.2.2, the Kalman filter algorithm can be derived for this state-space
model.

The derivation of the fast implementation is similar to the derivation in Sec-
tion 7.3.1–7.3.3. But now the state should be augmented with NuNr additional
zero-states as follows:

x̃(0) =
[

wo11
nw

T
0 wo12

nw

T
0 · · · woNuNr

nw

T
0 θT

0

]T
∈ R(nw+1)NuNr+ns

(cf. (7.43)). The elements of the augmented state-error covariance matrix P̃−1

referring to those zero-states are set to zero. If we choose

Pww
−1 = δ · INuNr

⊗ diag{λ, λ2, · · · , λnw}

in Section 7.3.3, we end up with the following MIMO extension for L̃−1 and M

L̃−1 =
√

δ




INuNr
⊗




1 0

0nw−1×1 0nw−1×1

0 λnw/2




0ns×2NuNr




, M = INuNr
⊗
[

1 0

0 −1

]
.

Note that now dP̃0 has rank 2NuNr, and L̃−1 ∈ R((nw+1)NuNr+ns)×2NuNr .

7.4 Comparison with modified Filtered-RLS

Figures 7.2 and 7.3 show the block diagrams of the Filtered-RLS and the modified
Filtered-RLS algorithm respectively. Because the adaptive filter Ŵk(q−1) signifi-
cantly varies in time, the adaptive filter and the secondary path system may not
be interchanged as assumed in the Filtered-RLS algorithm. For this reason, the
modified Filtered-RLS algorithm has been proposed [51], which shows better con-
vergence. In the Filtered-RLS algorithm the reference signal r(k) is replaced by a
filtered reference signal r′(k) that is generated by1

θ′r(k + 1) = λ1/2Aθ′r(k) + λ1/2Bur(k), θ′r(0) = 0ns×1 (7.69)

r′(k) = Ceθ
′
r(k) + Deur(k) (7.70)

1Variables with subscript r or superscript r refer the variables from the modified Filtered-
RLS algorithm (in order to prevent confusion with variables from the Kalman filter algorithm of
Table 7.1).
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+

+

PSfrag replacements

−̂Wk(q
−1) Geu(q−1)

Ĝeu(q−1) RLS

r(k) u(k) y(k)

d(k)

e(k)

r′(k)

Figure 7.2: Block diagram of the Filtered-RLS algorithm.

+

+

+

+

+

−
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−̂Wk(q
−1)

−̂Wk(q
−1) Geu(q−1)

Ĝeu(q−1)

Ĝeu(q−1)
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r(k) u(k) y(k)

ŷ(k)

ỹ(k)

d(k)

d̂(k)

e(k)

εr(k)r′(k)

Figure 7.3: Block diagram of the modified Filtered-RLS algorithm.
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Note that in the expression for θ′r(k + 1) we are using the exponential forgetting
factor λ; this choice for generating r′(k) is motivated by the proof of Theorem 7.1.

The adaptive filter Ŵk(q−1) is tuned by the RLS algorithm such that the error

εr(k) = d̂(k) + ỹ(k) (7.71)

is minimized, where d̂(k) is the estimated disturbance determined by

θ̂r(k + 1) = Aθ̂r(k) + Buu(k), θ̂r(0) = 0ns×1, (7.72)

ŷ(k) = Ceθ̂r(k) + Deuu(k), (7.73)

d̂(k) = e(k)− ŷ(k) (7.74)

and ỹ(k) is the output of the adative filter given by

ỹ(k) = − r′Tnw
(k)ŵr(k) (7.75)

where

ŵr =
[

ŵ0(k) ŵ1(k) · · · ŵnw−1(k)
]T

, (7.76)

r′nw
(k) =

[
r′(k) r′(k − 1) · · · r′(k − nw + 1)

]T
. (7.77)

Table 7.2 lists the modified Filtered-RLS algorithm in its standard covariance and
fast-array forms, which are derived according to [151]. The computational com-
plexity of the modified Filtered-RLS algorithm can be reduced further by using
the Fast Transversal Filter (FTF), see [149, Ch. 14], but often at the expense of
numerical accuracy. The derivation of the modified RLS algorithm is quite ad hoc,
and no systematic derivation of the modification and conditions for its optimality
have been given yet.

In this section, we will compare the Kalman algorithm with the modified RLS
algorithm. Our main result in this section is that the modified RLS algorithm is
a special case of the Kalman algorithm of the previous section when there is no
uncertainty on the secondary-path state (due to initial-state uncertainty and/or
noise). By showing the equivalence, we have thus provided a systematic derivation
of the modified filtered-RLS algorithm and conditions for its optimality.

Theorem 7.1 The Kalman algorithm listed in Table 7.1 and the modified Filtered-
RLS algorithm listed in Table 7.2 are equivalent, under the condition that

Πθθ
0 = 0ns×ns

, Πwθ
0 = Πθw

0

T
= 0nw×ns

, Q = 0nv×nv
,

in the Kalman algorithm and r(k) = 0 for −nw ≤ k ≤ 0.

Proof: First, let us define

Sk+1 = λ1/2ASk + λ1/2BurT
nw

(k), S0 = 0ns×nw
(7.78)

Using expression (7.69) and the expression for rnw
(k) from Table 7.2 it can be

verified that

Sk =
[

θ′r(k) θ′r(k − 1) · · · θ′r(k − nw + 1)
]
. (7.79)
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Table 7.2: Modified Filtered-RLS algorithm in Kalman covariance and fast-array
forms

Kalman covariance form Fast-array form

Assumptions:

0 � λ ≤ 1

Πww
0 > 0

idem

Πww
−1 =

√
δ · diag{λ, λ2, · · · , λnw}, δ > 0

r′(k) = 0, for −nw−1 ≤ k ≤ −1

(i.e. prewindowed data)

Initialization:



θ̂r(0) = θ′
r(0) = 0ns×1

ŵr(0) = 0nw×1

idem





rnw (−1) =
[

r(−1) · · · r(−nw)
]T

r′
nw

(−1) = 0nw×1





idem

r′
nw+1(−1) = 0nw+1×1

P r
0 = Πww

0





L̃r
−1 =

√
δ




1 0

0nw−1×1 0nw−1×1

0 λnw/2




K
r
−1 = 0

Rr
e,−1

1/2 = R1/2

Iterate for k ≥ 0:




θ′
r(k + 1) =





Aθ′
r(k) + Bur(k) (standard)

λ1/2Aθ′
r(k) + λ1/2Bur(k) (new)

r′(k) = Ceθ′
r(k) + Deur(k)

idem





rnw (k) =
[

r(k) rT
nw−1(k − 1)

]T

r′
nw

(k) =
[

r′(k) r′T
nw−1(k − 1)

]T





idem

r′
nw+1(k) =

[
r′(k) r′T

nw
(k − 1)

]T





θ̂r(k + 1) = Aθ̂r(k) − BurT
nw

(k)ŵr(k)

ŷ(k) = Ceθ̂r(k) − DeurT
nw

(k)ŵr(k)

idem





ỹ(k) = −r′T
nw

(k)ŵr(k)

εr(k) = e(k) − ŷ(k) + ỹ(k)

idem





Kr
k = λ−1/2P r

k r′
nw (k)

Rr
e,k = Rr + r′T

nw
(k)P r

k r′
nw (k)

P r
k+1 = λ−1P r

k − Kr
kRr

e,k
−1Kr

k
T





Perform J-unitary rotation to make 1-2 block

of post-array zero,

J = (I2 ⊕ −1), Θk−1JΘT
k−1 = J




R
r1/2
e,k−1 r′T

nw+1(k)L̃r
k−1

 0

K
r
k−1


 λ−1/2L̃r

k−1


Θk−1 =

=




R
r1/2
e,k 01×2


K

r
k

0


 L̃r

k




ŵr(k + 1) = λ−1/2ŵr(k) + Kr
kRr

e,k
−1εr(k) ŵr(k + 1) = λ−1/2ŵr(k) + K

r
kR

r−1/2
e,k εr(k)
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Substituting this result into the expressions (7.70), (7.75) and (7.77) yields

r′Tnw
(k) = CeSk + DeurT

nw
(k) (7.80)

ỹ(k) = − CeSkŵr(k)−DeurT
nw

(k)ŵr(k) (7.81)

and thus

ŷ(k)− ỹ(k) = Ceθ̂r(k) + CeSkŵr(k). (7.82)

The relations just derived will be used in the sequel in the proof.
By induction the following relations can be verified:

Kalman: RLS:

ŵ(k) = ŵr(k) (7.83)

θ̂(k) = θ̂r(k) + Skŵr(k) (7.84)

Re,k = Rr
e,k (7.85)

Kw
k = Kr

k (7.86)

Kθ
k = Sk+1K

r
k (7.87)

Pk =

[
Pww

k Pwθ
k

P θw
k P θθ

k

]
=

[
Inw

Sk

]
P r

k

[
Inw

S
T

k

]
(7.88)

The first step is to show that (7.83)-(7.88) hold for k = 0, which can be verified
readily from the initialization of the algorithm from Table 7.1 and 7.2 and the
assumptions in the theorem. Note that if (7.84) holds, then also ε(k) = εr(k)
holds. Further, since S0 = 0ns×nw

the equivalence (7.88) yields

P0 =

[
Πww

0 Πwθ
0

Πθw
0 Πθθ

0

]
=

[
Πww

0 0nw×ns

0ns×nw
0ns×ns

]
,

which is the reason to assume Πθθ
0 , Πwθ

0 and Πθw
0 to be zero in the theorem.

The second step is to show that if (7.83)-(7.88) hold for k, then (7.83)-(7.88)
also hold for k + 1. Assume (7.83)-(7.88) hold for k. That (7.83) holds for k + 1
directly follows from (7.84) (i.e., ε(k) = εr(k)), (7.85) and (7.86) and the update
rules of w(k) and wr(k).

To show that (7.84) holds for k + 1, we write

θ̂(k + 1) = Aθ̂(k) + Sk+1K
r
kRr

e,k
−1εr(k)

= A(θ̂r(k) + Skŵr(k)) + Sk+1K
r
kRr

e,k
−1εr(k)

= A(θ̂r(k) + Skŵr(k)) + Sk+1(ŵr(k + 1)− λ−1/2ŵr(k))

On the other hand, we have

θ̂r(k + 1) + Sk+1ŵr(k + 1) =

= Aθ̂r(k)−BurT
nw

(k)ŵr(k) + λ1/2ASkŵr(k + 1) + λ1/2BurT
nw

(k)ŵr(k + 1)

= A(θ̂r(k) + Skŵr(k)) + (λ1/2ASk + λ1/2rT
nw

(k))(ŵr(k + 1)− λ−1/2ŵr(k))

= A(θ̂r(k) + Skŵr(k)) + Sk+1(ŵr(k + 1)− λ−1/2ŵr(k))
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and thus θ̂(k + 1) = θ̂r(k + 1) + Sk+1ŵr(k + 1).
Before showing that (7.85)-(7.87) hold for k + 1, we show that (7.88) holds.

Using the fact that (7.85)-(7.88) hold for k and the assumption that Q = 0, we can
write

Pk+1 =

[
λ−1/2Inw

0nw×ns

BurT
nw

(k) A

][
Inw

Sk

]
P r

k

[
Inw

Sk

]T[
λ−1/2Inw

0nw×ns

BurT
nw

(k) A

]T

+

−
[

Inw

Sk+1

]
λ−1/2P r

k r′Tnw
(k)
(
R + r′Tnw

(k)P r
k r′nw

(k)
)−1

r′nw
(k)P r

k λ−1/2

[
Inw

Sk+1

]T

=

[
Inw

Sk+1

]
λ−1P r

k

[
Inw

Sk+1

]T

−
[

Inw

Sk+1

]
Kr

kR−1
e,kKrT

k

[
Inw

Sk+1

]T

=

[
Inw

Sk+1

]
P r

k+1

[
Inw

Sk+1

]T

Thus (7.88) holds for k + 1.
Using this result, we can write

Re,k+1 = R + (DeurT
nw

(k + 1) + CeSk+1)P
r
k+1(DeurT

nw
(k + 1) + CeSk+1)

T

= R + r′Tnw
(k + 1)P r

k+1r
′
nw

(k + 1)

= Rr
e,k+1

Kk+1 =

[
Kw

k+1

Kθ
k+1

]

=

[
Inw

λ1/2(BurT
nw

(k + 1) + ASk+1)

]
λ−1/2P r

k+1

[
Inw

Sk+1

]T [
rnw

(k)DT
eu

CT
e

]

=

[
Inw

Sk+2

]
λ−1/2P r

k+1(DeurT
nw

(k + 1) + CeSk+1)
T

=

[
Inw

Sk+2

]
Kr

k+1

Thus (7.85)-(7.87) hold for k + 1.
Hence, (7.83)-(7.88) hold for all k ≥ 0 and we conclude that the Kalman algo-

rithm of Table 7.1 and the RLS algorithm of Table 7.2 (with θ′r(k + 1) given by
(7.69)) are equivalent under the conditions given in the theorem. �

The effect of λ in the expression for θ′(k + 1) in (7.69) (see also Table 7.2) yields

r′(k) = Deur(k) + λ1/2CeBur(k − 1) + λCeABur(k − 2)+

+λ3/2CaA2Bur(k − 3) + · · ·

and thus λ has the effect of exponential forgetting in the generation of the filtered
reference signal r′(k).
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Table 7.3: Computational load of the fast-array RLS (Table 7.2) and fast-array
Kalman (Table 7.1) algorithms, with the secondary-path in full state-space and FIR
parameterization in number floating point additions or multiplications (neglecting
terms not depending on dimensions nw and ns).

Action: RLS Kalman

state-space FIR state-space FIR

Filtered-reference: 2n2
s + 3ns 2ns − −

Disturbance estimate: 2n2
s + 3ns 2ns − −

Calculation innovation: 2nw 2nw 2ns 0

Construction pre-array: 6nw 6nw 6nw + 4n2
s 6nw + 2ns

Performing rotations: 12nw 12nw 12nw + 12ns 12nw + 12ns

Updating coefficients/state: 3nw 3nw 3nw + n2
s + ns 3nw + 2ns

Calculating control: 2nw 2nw 2nw 2nw

Total: 25nw + 4n2
s + 6ns 25nw + 4ns 23nw + 5n2

s + 15ns 23nw + 16ns

Finally, Table 7.3 compares the computational complexity of the fast-array im-
plementations of the modified Filtered-RLS and the Kalman algorithm proposed in
this chapter. From this table, we infer that the number of floating point operations
are linearly increasing with nw. The main computational step is the evaluation of
the rotations. Each elementary rotation is of the form

xnew ← α(x + ρy)

ynew ← ρxnew − βy

which takes 6 floating point operations. The rotations need to be evaluated for
all rows in the pre-array and by operating on the elements in the column pair
1-2 and the column pair 1-3. Alternative implementations are also possible, see,
e.g., [149, Ch. 14].

7.5 Simulation results

To illustrate the method, simulations are performed on an ns = 19th order discrete
acoustic duct system with signal-to-noise ratio of 30dB and r(k) is a zero-mean
white-noise signal with unit variance. The number of filter coefficients was chosen
to be nw = 150. Only the fast-array implementations contained in Tables 7.1
and 7.2 are used, with λ = 1 (no exponential forgetting). The measurement noise
variance was R = 2.1 ·10−5. The value of δ, which determines the magnitude of the
initial state covariance P−1, was set to δ = 10−3. In the (fast-array) Kalman filter
algorithm Q has chosen to be Q = 2 · 10−3. For comparison, also the FxLMS and
the preconditioned FxLMS (c.f. Chapter 6) have been used with the normalized
stepsize chosen to be 0.05, optimized by trial and error. All algorithms are turned
on after 1000 samples.

Figure 7.4 shows the learning curves obtained by the algorithms, averaged over
50 experiments. From this figure, it can be concluded that both the RLS and the
Kalman filter algorithm converge to (approximately) the same performance level.
However, the RLS algorithm shows a significant overshoot directly after turning on
the algorithm. This overshoot can be explained by the fact that the uncertainty in
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Figure 7.4: Learning curves obtained by the Kalman, RLS, FxLMS and the Pre-
conditioned FxLMS algorithm, averaged over 50 experiments.

the secondary path state is not taken into account, contrary to the Kalman filter
algorithm for Q 6= 0. The FxLMS and the preconditioned FxLMS are converging
much slower, as is expected since they are based on an LMS estimated gradient
update. But, note that the computational complexity per iteration of FxLMS
and preconditioned FxLMS is still lower than the computational complexity of the
fast-array implementations of the RLS and Kalman filter algorithms.

The same experiment was performed by chosing δ in the RLS and the Kalman
filter algorithm to be δ = 10−4, see Figure 7.5. From this figure, it is clear that
the overshoot of the RLS algorithm with δ = 10−3 can be considerably reduced by
lowering δ to δ = 10−4, but at the expense of convergence rate. Using δ = 10−4

in the Kalman algorithm, shows fast convergence at the first few hundred samples,
but then it convergence rate slows down to the convergence of the RLS algorithm.

From these observations, we conclude that the overshoot or bad convergence
of the RLS algorithm at startup can be prevented by the Kalman filter algorithm,
since uncertainty in the secondary path state is accounted for.

The same experiment has been repeated for an uncertain secondary path model,
which contains 1 sample in addition to the secondary path system. Figure 7.6 shows
the learning curves obtained by the Kalman and the RLS algorithm for δ = 10−3

and δ = 10−4. From this figure, we observe that the algorithms are, within some
extend, robust for the model uncertainty in the secondary path model, at least
no divergence is obtained. However, the all algorithms converge to a suboptimal
solution (c.f. with the performance obtained in Figure 7.4 and 7.5), which is lower
δ = 10−4 than for δ = 10−3 for both the Kalman and the RLS algorithms. From
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Figure 7.5: Learning curves obtained by the Kalman and the RLS algorithm for
δ = 10−3 and for δ = 10−4, averaged over 50 experiments.
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Figure 7.6: Learning curves obtained by the Kalman and the RLS algorithm for
δ = 10−3 and for δ = 10−4 with 1 sample delay uncertainty in the secondary path
model, averaged over 50 experiments.
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this observation, we conclude, that the robustness w.r.t. model uncertainty (for
this particular case) can be improved by lowering δ to δ = 10−4. But both, the
Kalman and the RLS algorithm, converge to suboptimal solutions, and do not show
significant different convergence behavior for this model uncertainty (apart from
the uncertainty in the secondary-path state).

7.6 Conclusions

The active control problem can be reformulated in state-space form, which over-
comes formulating the control problem in terms of interchanging the adaptive
filter and the secondary path. In this way, uncertainty due to initial-state and
time-variations are taken into account explicitly. The state-estimation problem
was solved by the Kalman filter and the structure in the state-space matrices was
exploited to develop a fast-array implementation of the algorithm. Under the the-
oretical condition that there is no uncertainty in the secondary path state, it is
proven that the Kalman algorithm is equivalent to the modified Filtered-RLS algo-
rithm. Hence, the Kalman algorithm can be seen as a generalization of the modified
Filtered-RLS algorithm. At the same time, conditions for optimality of the modi-
fied Filtered-RLS algorithm are derived. When using exponential forgetting in the
modified Filtered-RLS algorithm, the forgetting factor should also be applied to
the reference signal.



Chapter 8

Conclusions, evaluation

and further research

8.1 Conclusions

In this thesis various algorithms for fast and robust active control of broadband
noise and vibration are proposed. In the following, we summarize the main con-
clusions and the more detailed conclusions for each chapter. Section 8.2 evaluates
the practical relevance of the contributions and Section 8.3 comments on further
research.

The main conclusions of this thesis are:

• The nominal broadband feedforward controller can be estimated by solving a
control-relevant identification problem, which compensates for model errors
in the spectral factor of the reference signal and enables controller order
reduction.

• The nominal design method has been extended to a probabilistic robust de-
sign method, in which the model uncertainty is considered as a stochastic
variable (in the frequency domain) with zero-mean and known covariance and
optimizes the performance averaged over the stochastic model uncertainty.

• Both, the nominal and the robust, design methods are applied to feedback
problems using IMC. It is shown that the robust design method increases
stability robustness.

• Conditions for global convergence of the FuLMS algorithm are derived which
hold also in case perfect cancellation is not achievable.

• The robustness of FxLMS and preconditioned FxLMS w.r.t. model uncer-
tainty in the secondary path has been increased using the probabilistic robust
approach.

• A Kalman filter solution has been proposed which optimally (in the minimum
variance sense) estimates the filter coefficients. The derivation overcomes
formulating the control problem in terms of interchanging the adaptive filter

149
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and the secondary path as in the modified Filtered-RLS algorithm. In case
there is no uncertainty on the state of the secondary path (due to initial state
uncertainty or noise), it is shown that the Kalman filter solution reduces to
the modified Filtered-RLS algorithm.

• A fast-array implementation of the Kalman filter solution is derived with
complexity O(23nw + 16ns) for the SISO case, with nw the number of co-
efficients of the adaptive controller and ns the number of coefficients of the
secondary path model (in FIR realization).

• A fast implementation of state-space iterations via input- and output-normal
forms has been obtained. An application is the use of the input-normal
parameterization to efficiently calculate the regression vector of the FxLMS
algorithm for multi-channel secondary path systems, see Appendix C.

The more detailed conclusions per chapter are:

Chapter 2 Optimal feedforward and feedback control. The solution to the
optimal feedforward control problem is provided by the Causal Wiener filter. When
the detector and the secondary path contain non-minimum phase zeros that are
not canceled by non-minimum phase zeros in the primary path, there will be still
correlation between the optimal residual disturbance and the disturbance source
signal, which means that perfect cancellation is not achievable. Measurement noise
on the reference signal uncorrelated with the disturbance source signal, will reduce
the magnitude of the Causal Wiener filter. Dually, control effort weighting also will
reduce the magnitude of the Causal Wiener filter. For systems with feedback, where
the feedback is determined by a stable system, the feedback can be compensated for
by means of Internal Model Control. Since in practice, the model of the feedback
is distorted by model errors, stability robustness of the closed loop has to be taken
into account in the controller design.

Chapter 3 Nominal controller estimation. Subspace Model Identification
(SMI) provides a compact state-space model which models the common dynam-
ics at several outputs only once, contrary to Prediction Error Modeling (PEM).
Simulation experiments on a 4×4 vibrating plate of order 20, show that with the
SMI (PO-MOESP) implementation contained in the SLICOT library [159] an ac-
curate model could be obtained within less then one minute computation time. In
comparison, the PEM algorithm implemented in the Matlab Identification tool-
box [105] provided a less accurate (output-error) model within more than 5 minutes
computation time. Therefore, in this thesis, the choice of SMI to estimate models
of the systems (which are typically infinite dimensional) is preferred over the PEM
approach.

For the identification of the secondary path Geu and the feedback path Gru it is
preferred that the disturbance source is turned off (i.e., s(k) = 0, which is possible
in many practical applications). In this way, s(k) does not act as a disturbance on
the outputs of Geu and Gru, and thus can be identified more accurately.
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Assuming perfect modeling of Geu (and for systems with feedback Gru it is
assumed that the feedback is perfectly compensated by IMC), the Causal Wiener
filter has been estimated by solving a control-relevant identification problem. This
means that during identification the same cost-function has been minimized as
obtained for control.

Chapter 4 Robust controller estimation. Model uncertainty has been ex-
plicitly taken into account by using a probabilistic uncertainty model, cf. [164].
The uncertainty is supposed to be a random variable in the frequency domain,
with zero-mean and known covariance. The (frequency-dependent) covariance is
given by a state-space realization of a (co-)spectral factor, and can be determined
e.g. by identifying the system under various realistic conditions.

The feedforward controller, which minimizes the variance of the residual signal
summed over all channels and averaged over the distribution of the model uncer-
tainty, is given by the Cautious Wiener filter. It is shown, that the uncertainty
in the detector and the secondary path act similarly as measurement noise on the
reference signal and control effort weighting respectively. Furthermore, at the fre-
quency bands where the uncertainty in the detector and/or secondary path is large,
the gain of the Cautious Wiener filter is reduced. The Cautious Wiener solution is
independent of the uncertainty in the primary path.

The nominal control-relevant estimation method of Chapter 3 is extended to the
control-relevant estimation of the Cautious Wiener filter. In case of uncertainty
in the secondary path Geu, the inner-outer factorization of the secondary path
model is replaced by the inner-outer factorization of the secondary path model
augmented with the co-spectral factor ∆̃Geu which quantifies the uncertainty. In
case of uncertainty in the detector path Grs, an additional disturbance signal,
uncorrelated with the primary disturbance and shaped by the spectral factor ∆̃Grs

which quantifies the uncertainty, is added on the reference signal.
For feedback systems, the Cautious Wiener filter increases stability robustness,

since the loop-gain is reduced at the frequencies where the uncertainty is large.
Because closed-loop stability is not guaranteed, a scaling of the uncertainty is in-
troduced which allows further reduction of the loop-gain until stability is obtained.

Chapter 5 Convergence Analysis of Filtered-U LMS. The convergence
analysis of the FuLMS algorithm, which adapts an IIR filter, as given in [187] was
based on Ljung’s Ordinary Differential Equation (ODE) approach to the analysis
of recursive identification schemes. In the ODE approach, it is assumed that the
system is contained in the model set, such that when the recursive identification
algorithm has been converged to its global optimum, the prediction error is only
determined by measurement noise. To adopt the ODE approach to study the con-
vergence of the FuLMS algorithm, it was assumed in [187] that perfect cancellation
is achievable, such that at the global optimum, the residual signal is determined
by measurement noise only. In Chapter 5 it has been shown that this assumption
is not necessary and the ODE approach can be used, even for the case perfect can-
cellation is not achievable. The reason is, that it could be shown that the optimal
residual signal (which may still contain contributions from the disturbance source)
is uncorrelated with the FuLMS regression vector.
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The convergence rate of the FuLMS algorithm can be significantly improved
by a preconditioning similar as proposed for the FxLMS algorithm in [47]. The
preconditioning consists of prewhitening the reference signal and filtering the out-
put of the adaptive filter with the inverse secondary path outer-factor. Due to
the nonlinearity in the adaptive IIR filter, the analysis of the convergence rate is
highly complicated and no proof could yet be given that preconditioning increases
the convergence rate of the FuLMS algorithm. But, significant increase of the con-
vergence rate has been demonstrated by simulation experiments on an acoustical
duct system.

Chapter 6 Robust preconditioned Filtered-X LMS. The robustness of the
preconditioned FxLMS algorithm proposed in [47] has been increased using the
probabilistic robust filtering approach considered in Chapter 4. The robust FxLMS
and robust preconditioned FxLMS algorithms have been derived by minimizing
the variance of the residual signal (summed over all channels) averaged over the
distribution of the model uncertainty. It has been shown that, accounting for
uncertainty in the secondary path model, the SPR condition which guarantees
global convergence is relaxed. Furthermore, the gain of the preconditioning filter
is reduced, which may prevent over steering problems.

The robust (preconditioned) FxLMS algorithm is equivalent to the FxLMS
algorithm for the system with residual signal channels augmented with the control
signal filtered by the uncertainty spectral factor ∆̃Geu. In case the uncertainty is
frequency independent, i.e. ∆̃Geu is a scalar, the robust (preconditioned) FxLMS
algorithm reduces to the Leaky (preconditioned) FxLMS algorithm.

Chapter 7 A Fast-array Kalman filter solution. The ANVC adaptive feed-
forward control problem has been formulated as a state-estimation problem. This
approach was also taken in [154]. However, [154] still uses an estimation of the
disturbance signal obtained by means of a Internal Model Control approach, which
is not necessary in the approach proposed in Chapter 7. The state estimation
problem has been solved optimally (in the minimum variance sense) by using the
non-stationary Kalman filter solution.

It has been shown that the state-space model is structured, in the sense consid-
ered in [150], such that a fast-array implementation could be derived. In fast-array
algorithms, the initialization of the state-error covariance matrix is important, be-
cause for all following iterations, it determines the rank of the ‘difference’ quantity
of the state-error covariance matrix between two iterations. The rank of this matrix
determines the size of the array which will be rotated. An efficient initialization
has been found, such that the rank of the ‘difference’ is just 2 for all iterations (for
the single channel case).

Furthermore, it has been shown that the modified Filtered-RLS algorithm is
a special case of the Kalman filter solution. Under the theoretical condition that
there is no uncertainty in the secondary path state, it is proven that the Kalman
algorithm is equivalent to the modified Filtered-RLS algorithm. In this way, a theo-
retical sound derivation of the modified Filtered-RLS algorithm has been obtained,
which overcomes formulating the control problem in terms of interchanging the
adaptive filter and the secondary path. It also shows, that when using exponential
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forgetting in the modified Filtered-RLS algorithm, the forgetting factor should also
be applied to the reference signal.

8.2 Evaluation of practical relevance

The thesis started in Section 1.2 on page 5 by distinguishing, besides the necessity of
electronic equipment, the following problems with practical ANVC control systems:

• Lack of robustness;

• Slow convergence for broadband applications;

• Computationally complex algorithms;

• Lack of tracking performance.

At the end of the thesis, do we do better? Though further improvements are
necessary, we can answer this question positively, since the proposed algorithms
show promising results in laboratory experiments. We may conclude, that all as-
pects —robustness, convergence time, computational complexity and in less extend
also tracking— are addressed, better understanding of the problems and existing
algorithms has been obtained and improved algorithms are proposed.

In the following, we briefly discuss the practical relevance the contributions.

Control-relevant controller estimation. In case the spectral factor of the
reference signal cannot be accurately identified, the control-relevant nominal and
robust design methods, of Chapter 3 and 4 respectively, are preferred to obtain
better performance, instead of the fully model based Causal/Cautious Wiener or
LQG approach.

The drawback is that the causal factor [G∗
eu,iGesG

∗
rs,ci]+ of the Causal Wiener

filter needs to be identified, and the user needs to determine system identification
parameters (the number of samples for identification, the number of blockrows
for subspace identification, and the system order). However, these parameters are
determined by the dynamics of the system and hence can often be chosen the same
as those during identification of Geu and Gru. In addition, subspace identification
methods provide information on the system order and in general the number of
blockrows can be chosen to be two times the expected system order.

Furthermore, the nominal and robust design methods, of Chapter 3 and 4, allow
the estimation of a reduced order Causal or Cautious Wiener filter which reduces
the number of real-time computations to calculate the control signal.

Nominal and robust controller estimation. In general robustness has to be
taken into account in every controller design for practical application. Usually, the
robustness (performance and for feedback applications also stability robustness) of
the nominal controller is very poor, but can be easily improved by control-effort
weighting and/or increasing the variance of the measurement noise on the reference
signal, cf. Section 2.2.3 and 2.2.4 on page 41. Which is the same as setting the
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uncertainty models ∆̃Grs and ∆̃Geu to a scalar times the identity matrix in the
robust design approach (see the end of Section 4.3 on page 86).

In applications where the uncertainty in the model is dominant only in partic-
ular frequency bands, robustness can be improved without paying too much per-
formance, by using the probabilistic robust controller design approach discussed in
Chapter 4. Uncertainty models ∆̃Grs and ∆̃Geu of the uncertainty in the detector
path model and the secondary path model respectively, needs to be determined by
estimating them as discussed in Section 4.4 on page 87 or by tuning.

Blockwise/offline controller estimation versus FxLMS/FuLMS. For the
experiments considered in this thesis (systems with order 30–80 and up to 4 in-
puts and 4 outputs), the computation time to calculate the nominal and robust
controllers by the estimation approach of Chapter 3 and 4 (about 40 seconds, on
a 2.6GHz PC) is lower than the convergence of the FxLMS or FuLMS algorithm
(about 8 minutes). With increasing computational performance of PC’s the com-
putation time to calculate the nominal and robust controllers is expected to be
further reduced in the future, whereas the convergence time of adaptive algorithms
is related to the number of samples and the sampling rate.

Furthermore, since the controllers obtained by the nominal and robust estima-
tion methods are not adaptive, the number of real-time computations is signifi-
cantly less (especially when using the input- or output-normal form parameteri-
zation of Appendix C) then the number of real-time computations of FxLMS and
FuLMS.

On the other side, when the model of the secondary path Geu is very coarse,
the performance of the off-line/blockwise nominal and also robust design meth-
ods is poor, whereas FxLMS and FuLMS yield still good performance in case the
conditions (such as the SPR condition) for global convergence are satisfied.

Global convergence and preconditioning of FuLMS. Though the condi-
tions for global convergence of FuLMS are relaxed to the more realistic case where
no perfect cancellation is achievable due to non-minimum phase zeros, the conver-
gence analysis of the FuLMS algorithm is still only of theoretical interest. This is
because to check the conditions for global convergence knowledge of the optimal
denominator polynomial of the adaptive filter should be known as well as the or-
ders of the optimal numerator and denominator polynomials. Only in case accurate
models of the system are available, the optimal controller can be calculated and
the conditions can be analyzed.

The preconditioning of the FuLMS algorithm considerably increases the con-
vergence rate, as was illustrated by simulation examples. The computational costs
are only slightly increased since just 2 additional filtering actions (of the reference
signal and the control signal) are necessary and the regression vector is constructed
by filtering the pre-withened reference signal with the inner-factor of the secondary
path model which is usually of much smaller order —the number of non-minimum
phase zeros— than the complete secondary path model. In multiple channel ap-
plications the computational complexity may be even reduced, since each reference
signal and each control signal need to be filtered only with the inner-factor in-
stead of the complete secondary path model, which may yield a larger reduction of



8.3 Further research 155

real-time computations than the increase due to the 2 additional filtering actions.
This also holds for the preconditioned FxLMS algorithm, except that the (filtered)
control signal is not contained in the regression vector.

Robust preconditioned FxLMS. The robust preconditioned FxLMS algo-
rithm increases the robustness of preconditioned FxLMS in specific frequency
bands. In this way, the robustness of the preconditioned FxLMS algorithm was
considerably increased without paying too much performance in a simulation ex-
ample on a duct system with uncertainty in the secondary path delay. It was
shown, that the performance versus robustness trade-off was much better than by
just using a scalar weighting of the control-effort signal (equivalent to leakage).
However, the number of columns of the regression vector is increased by the num-
ber of control-signals, which rather increases computational complexity. Hence, in
case computational complexity is more a key issue than the performance-robustness
trade-off, the robustness of preconditioned FxLMS should be increased by using a
scalar leakage factor in the preconditioned FxLMS algorithm.

Fast-array Kalman filter. The advantage of the Kalman filter solution over the
modified Filtered-RLS algorithm is that uncertainty in the secondary path state is
taken into account. In practice the secondary path state is not known exactly due
to noise and the unknown initial secondary path state. Because of the uncertainty
in the secondary path state, the modified Filtered-RLS algorithm shows a large
overshoot, which is prevented using the Kalman filter solution.

The Kalman filter solution yields optimal convergence rate of the controller
coefficients, e.g., in the broadband simulation example with an acoustical duct in
Section 7.5 on page 145 the 150 filter coefficients converged within about 1000
samples. This makes the Kalman filter solution very suitable in tracking of non-
stationary disturbances.

Because a fast-array implementation of the Kalman filter solution could be de-
rived, the obtained algorithm can be applied in single channel ANVC systems,
where the complexity is O(23nw +16ns), with nw the number of coefficients of the
adaptive controller and ns the number of coefficients of the (FIR) secondary path
model. For multiple channel applications, further research is necessary to reduce
the computational complexity. In the following section, we provide some recom-
mendations for further research on the reduction of computational complexity.

8.3 Further research

It would not be remarkable, that the contributed algorithms do not provide im-
provement of all criteria at the same time. For example, the robust version of the
preconditioned FxLMS algorithm improves the robustness, but increases compu-
tational complexity. This is one motivation for further improvement of the contri-
butions and the search for new algorithms for ANVC applications. Furthermore,
the potential of the algorithms have been demonstrated by laboratory experiments,
but no extensive comparisons have been made between various algorithms such as
the (robust) preconditioned FxLMS algorithm and the nominal (robust) controller
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estimation method. The results of these comparison studies will provide useful ad-
ditional information about the choice of the control algorithm for different practical
ANVC problems.

In the following, a list of further research recommendations are provided. First,
we give the theoretical research recommendations on the further development of
the algorithms. Second, we give the practical research recommendations on the
choice and the use of the algorithms in practice.

Theoretical research recommendations:

• Automatic iterative identification and robust controller design: In
practice, it may happen that the model uncertainty is so large, that also the
probabilistic robust controller of Chapter 4 does not yield good performance
anymore. In this case, it is desirable to update the model during control,
such that the model accuracy is improved in the frequency band of interest.
Using this improved model a new (robust) controller can be computed which
is expected to yield better performance. This iterative identification and
controller design approach has been a quite active research field, cf. e.g.,
[69, 71, 175]. However, further research is necessary to develop reliable fully
automatic procedures for high order systems without intervention of the user.

In this line, also the iterative design proposed in [115, 116] which has been
based on the iterative feedback tuning approach of [82]. Here, no model is
necessary at all but during control in each iteration the disturbance source
needs to be turned off for some time, which is not always possible during
operation.

• Stable predictor estimation with SMI: In the control-relevant estimation
approach of Chapter 3 and 4, the algorithm based on prediction error model
(PEM) identification differs from the one based on subspace model identifica-
tion (SMI). This is due to the fact that SMI cannot estimate a predictor with
explicitly taking into account the stability constraint. In PEM identification,
this stability constraint is accounted for every iteration by projection on the
set of stable systems. Further research should give insight, whether the sta-
bility constraint can be incorporated in SMI algorithms, e.g., by means of an
iterative search algorithm with projection on the stable set of system (e.g.,
by means of the methods proposed in [27,111].

• Control-relevant estimation of probabilistic robust feedback con-
troller proposed in [73]: Given a stabilizing controller which yields a
desired sensitivity function for the nominal model, Goodwin et al. [73] pro-
pose a control design method based on the IMC principle to minimize the
H2-norm of the difference between the actual and the desired sensitivity func-
tion, averaged over the stochastic model uncertainty. As in Chapter 4, where
the Cautious Wiener has been used in an IMC framework for feedback ap-
plications, a linearizing approximation had to be made to reformulate the
non-linear closed-loop problem in a linear open-loop problem. Further re-
search is necessary to compare both approximations in more detail and to
determine which approach is better (i.e., less conservative). Further research
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is also necessary to develop a control-relevant estimation approach to estimate
the controller proposed in [73] using measured data directly.

• Convergence of Filtered-U LMS:

1. Convergence analysis of FuLMS for problems with feedback:
Conditions for global convergence of the FuLMS algorithm were pro-
posed in [187] assuming perfect cancellation is achievable. Chapter 5
shows this assumption of perfect cancellation is achievable is not neces-
sary. But, in both convergence results it has been assumed that the ref-
erence signal is not distorted by feedback of the control signal. In [187],
and by reference also in [46, 58, 125], it was erroneously claimed that
the convergence result could be extended to systems with feedback, as
was pointed out in [168]. Hence, the problem of the convergence of the
FuLMS algorithm in case there is feedback of the control signal to the
reference signal is still an interesting research question.

Note, that active control problems with feedback were the original mo-
tivation of Eriksson et al. [49] to propose the FuLMS algorithm.

2. Proof that preconditioning increases the convergence rate of
the FuLMS algorithm: Due to the non-linear structure of the IIR
adaptive filter in the FuLMS algorithm, the analysis of the convergence
rate of the FuLMS algorithm is very difficult. Because of this reason, no
theoretical analysis of convergence of the preconditioned FuLMS algo-
rithm had been given in Chapter 5. It would be interesting to investigate
whether bounds on the convergence rate of the FuLMS and the precondi-
tioned FuLMS algorithm can be obtained. For example by using a linear
approximation of the non-linear ODE which describes the convergence
of filter-coefficients obtained by using Ljungs’ ODE approach.

• Fast-array Kalman solution:

1. Block processing for further reduction of computations: In [110]
it is shown for the fast implementation of the RLS algorithm via the Fast
Transversal Filter (FTF) a block processing approach can be used to
obtain a further reduction of the computational complexity. The block
processing approach exploits the (Fast Fourier Transform) FFT, such
that the total number of computations for one block of samples is less
than the number of computations of the sample-by-sample algorithm
using the same number of samples. It would be interesting to investi-
gate whether such a block processing algorithm exists for the fast-array
Kalman solution1.

2. Fast-array robust filter solutions: Recently, the fast-array H∞-filter
has been developed in [74] (see also [75]). We believe that the fast-array
H∞-filter can also be used for the time-varying state-space equations

1Note, that it is not trivial —if possible at all— to derive a FTF implementation of the fast-
array filter. This is because, in the Kalman filter solution the state-transition matrix Ak is not
just a scalar times the identity matrix as in the RLS algorithm (where the scalar is the forgetting
parameter), cf. [151, Sec. 7.5.3].
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in the state-space approach to active noise control of Chapter 7. The
H∞-filter appears to be more robust w.r.t. uncertainty in the statistics
of the measurement noise than the Kalman filter. And therefore better
robustness properties are expected by using the H∞-filter, as was also
discussed in [154].

However, in the H∞-filter every iteration a particular matrix should be
checked to be positive definite. If this matrix becomes negative definite
the H∞ filter does not yield reliable results anymore.

This ‘deregularization’ of the H∞-filter is prevented by the robust frame-
work to state-space estimation proposed in [148]. Here a robust least
squares approach [152] to state-estimation has been taken, where ro-
bustness has been obtained by regularization of the least-squares prob-
lem. Also see the robust solutions in [167], which guarantees a minimum
state-error covariance. However, the robust solutions of [148,167] breaks
down the structure in the state-space model to derive a fast-array im-
plementation. It is interesting to investigate fast-array robust solutions
in line of the regularization approach taken in [148].

3. Generalization to the case where perfect cancellation cannot
be obtained: In the state-space approach to adaptive active noise con-
trol of Chapter 7, it is assumed that the FIR adaptive filter is such
that there exist optimal values of the coefficients such that the residual
disturbance only consists of measurement noise. It is worth to investi-
gate whether this assumption can be relaxed. For example, to enable to
choose the FIR adaptive filters of reduced length which does not yield
perfect cancellation but some desired level of cancellation. Or another
application would be to ANVC systems in which perfect cancellation
cannot be obtained due to non-minimum phase zeros.

4. Analyze the convergence of the Kalman filter solution for sys-
tems with feedback: In case the reference signal is ‘distorted’ by
feedback from the control signal, the state-transition matrix Ak and the
output matrix Ck are depending on past samples of the control signal.
The question which needs to be investigated, is whether the Kalman
filter still provides an unbiased minimum-variance estimate of the filter-
coefficients and the secondary path state.

• Decentralized and distributed control: For systems with a large number
of inputs and outputs (e.g., a few hundreds till thousands in future expected
smart materials) the centralized algorithms, as considered in this thesis, are
not feasible anymore. For these systems, the complexity of the control prob-
lem is too large and decentralized or distributed control methods need to be
used. Currently the development of these algorithms is an active research
field, and interesting approaches are already investigated in literature. For
example the decentralized control approach for smart panels proposed in the
series of papers [11, 66, 67], which exploits a passivity relation between (per-
fectly) collocated sensor/actuator pairs. In this decentralized control method,
there is no connection between the controller units. Another approach is dis-
tributed control, see, e.g., [5,31], which exploits (spatial) structure in the sys-
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tem and allows some degree of communication between the controller units.
Some important research questions are: 1) how large is the loss of perfor-
mance compared with centralized control design methods, 2) how large is
the loss of stability robustness, and 3) how to identify (spatially) structured
models for use in distributed controller design?

Practical research recommendations:

1. Validation of the robust controller estimation method using a large
number of conditions: In the vibrating plate experiments in Section 4.6
on page 93 the robust controller estimation method has been demonstrated
under two conditions: without and with additional mass mounted on the
plate. It would be interesting to validate the robust controller estimation
method for multiple conditions.

2. Relation between performance and accuracy of nominal secondary
path model: In some cases, the accuracy of the secondary path model is bad,
such that no good performance can be obtained by the (estimated) Causal
or Cautious Wiener filter (with IMC in feedback applications). However,
still the SPR condition for convergence of the FxLMS algorithm is satisfied,
such that the FxLMS algorithm converges and better performance can be
obtained than by the Causal or Cautious Wiener filter. Further research is
necessary to obtain better insight in the relation between the model accuracy
and the performance obtained by Causal or Cautious Wiener on one side and
the FxLMS algorithm on the other side. For example, how important is the
accurate modeling of delays in secondary path system?

3. Frequency domain implementation of the (robust) estimation
method: The estimation of the nominal and robust controller in Chapter 3
and 4 respectively, have been performed by subspace identification using time
domain samples. In most ANVC systems, the acoustical or mechanical system
contains many resonance frequencies, such that a huge amount of samples is
necessary to model the system. Since the number of data-samples determines
the computational complexity, it is worth investigating whether the number of
data samples can be reduced using frequency domain subspace identification
methods [112]. By careful experiment design accurate Frequency Response
Functions (FRF’s) of systems can be estimated [137], which are used as the
input to the frequency domain subspace identification method. The identifi-
cation of the causal factor [G∗

eu,iGesG
∗
rs,ci]+ of the Causal Wiener filter (see

(2.20) on page 36) can be estimated using the frequency domain causal/anti-
causal state-space identification method developed in Appendix D, which was
published before in [63].
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Appendix A

Proof of the Causal

Wiener Theorem

Theorem A.1 (Causal Wiener filter) Given Ges(q
−1) ∈ RHme×ms

∞ ,
Geu(q−1) ∈ RHme×mu

∞ , Grs(q
−1) ∈ RHmr×ms

∞ . Assume that Geu(q−1) and
Grs(q

−1) do not loose rank ∀|q| = 1. Then, let

Geu = Geu,iGeu,o (A.1)

Grs = Grs,coGrs,ci (A.2)

be the inner-outer and outer-inner factorization of Geu and Grs respectively and
G†

eu,o a right-inverse of Geu,o and G†
rs,co a left-inverse of Grs,co. Let G⊥

eu,i and

G⊥
rs,ci be such that [Geu,i G⊥

eu,i] and [G∗
rs,ci G⊥∗

rs,ci]
∗ are unitary. Then

W = −G†
eu,o

[
G∗

eu,iGesG
∗
rs,ci

]
+

G†
rs,co (A.3)

minimizes

||Ges + GeuWGrs||2, subject to W ∈ RHmu×mr
∞ (A.4)

and its minimum value is given by

||Ges + GeuWGrs||2 =√
||GesG⊥∗

rs,ci||22 + ||G⊥∗
eu,iGesG∗

rs,ci||22 + ||
[
G∗

eu,iGesG∗
rs,ci

]
− ||

2
2

(A.5)

Proof: The proof is given by [186, Section 6.2], and the strategy of the proof is by
completing the squares. Here, we give the proof in a general and slightly different
presentation.

First, note that by the inner-outer and outer-inner factorization lemmas,
Lemma 2.1 and 2.2 on page 35, the inner-outer and outer inner factorization of
Geu and Grs exists. Furthermore, since Geu and Grs do not loose rank ∀|q| = 1,
G†

eu,o and G†
rs,co are stable.

161
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Second, it will be usefull to write the (squared) cost function in the frequency
domain, as follows

J = ||Ges + GeuWGrs||22 =
1

2π
tr

π∫

ω=−π

(
Ges + GeuWGrs

)(
Ges + GeuWGrs

)∗
dω

using Parseval, where q is replaced by ejω. Because [G∗
rs,ci G⊥∗

rs,ci]
∗ is unitary, we

can write

Ges = GesG
∗
rs,ciGrs,ci + GesG

⊥∗
rs,ciG

⊥
rs,ci = Ges,1Grs,ci + Ges,2G

⊥
rs,ci

where Ges,1 = GesG
∗
rs,ci and Ges,2 = GesG

⊥∗
rs,ci. Hence, we can write

J =
1

2π
tr

π∫

ω=−π

(
Ges,1Grs,ci + Ges,2G

⊥
rs,ci + GeuWGrs,coGrs,ci

)(
.
)∗

dω

=
1

2π
tr

π∫

ω=−π

Ges,2G
∗
es,2dω +

1

2π
tr

π∫

ω=−π

(
Ges,1 + GeuWGrs,co

)(
.
)∗

dω

=
1

2π
tr

π∫

ω=−π

GesG
⊥∗
rs,ciG

⊥
rs,ciG

∗
esdω +

1

2π
tr

π∫

ω=−π

(
GesG

∗
rs,ci + GeuWGrs,co

)(
.
)∗

dω

=
1

2π
tr

π∫

ω=−π

G⊥
rs,ciG

∗
esGesG

⊥∗
rs,cidω +

1

2π
tr

π∫

ω=−π

(
.
)∗(

GesG
∗
rs,ci + GesWGrs,co

)
dω

where we made use of the identity tr(AB) = tr(BA) in the last step.
Now, because [Geu,i G⊥

eu,i] is also unitary, we can write

Ges = Geu,iG
∗
eu,iGes + G⊥

eu,iG
⊥∗
eu,iGes = Geu,iG̃es,1 + G⊥

eu,iG̃es,2

where G̃es,1 = G∗
eu,iGes and G̃es,2 = G⊥∗

eu,iGes. Hence, we can write

J =
1

2π
tr

π∫

ω=−π

G⊥
rs,ciG

∗
esGesG

⊥∗
rs,cidω+

+
1

2π
tr

π∫

ω=−π

(
.
)∗(

Geu,iG̃es,1G
∗
rs,ci + G⊥

eu,iG̃es,2G
∗
rs,ci + Geu,iGeu,oWGrs,co

)
dω

=
1

2π
tr

π∫

ω=−π

(
G⊥

rs,ciG
∗
esGesG

⊥∗
rs,ci + Grs,ciG̃

∗
es,2G̃es,2G

∗
rs,ci

)
dω+

+
1

2π
tr

π∫

ω=−π

(
.
)∗(

G̃es,1G
∗
rs,ci + Geu,oWGrs,co

)
dω



Proof of the Causal Wiener Theorem 163

=
1

2π
tr

π∫

ω=−π

(
G⊥

rs,ciG
∗
esGesG

⊥∗
rs,ci + Grs,ciG

∗
esG

⊥
eu,iG

⊥∗
eu,iGesG

∗
rs,ci

)
dω+

+
1

2π
tr

π∫

ω=−π

(
.
)∗(

G∗
eu,iGesG

∗
rs,ci + Geu,oWGrs,co

)
dω

Because W is constrained to be stable, Geu,oWGrs,co is stable, and thus
Geu,oWGrs,co = [Geu,oWGrs,co]+, ∀ W ∈ RHmu×mr

∞ , we can write

J =
1

2π
tr

π∫

ω=−π

(
G⊥

rs,ciG
∗
esGesG

⊥∗
rs,ci + Grs,ciG

∗
esG

⊥
eu,iG

⊥∗
eu,iGesG

∗
rs,ci

)
dω+

+
1

2π
tr

π∫

ω=−π

(
.
)∗(

[G∗
eu,iGesG

∗
rs,ci]+ + [G∗

eu,iGesG
∗
rs,ci]− + Geu,oWGrs,co

)
dω

=
1

2π
tr

π∫

ω=−π

(
G⊥

rs,ciG
∗
esGesG

⊥∗
rs,ci + Grs,ciG

∗
esG

⊥
eu,iG

⊥∗
eu,iGesG

∗
rs,ci+

+ [G∗
eu,iGesG

∗
rs,ci]

∗
−[G∗

eu,iGesG
∗
rs,ci]−

)
dω+

+
1

2π
tr

π∫

ω=−π

(
.
)∗(

[G∗
eu,iGesG

∗
rs,ci]+ + Geu,oWGrs,co

)
dω (A.6)

where we made use of the fact, that for X,Y transfer function matrices of equal
dimensions and [X]+[Y ]− has no poles on the unit circle, we have

1

2π
tr

π∫

ω=−π

(
[X]+ + [Y ]−

)∗(
[X]+ + [Y ]−

)
dω =

1

2π
tr

π∫

ω=−π

(
[X]∗+[X]+ + [Y ]∗−[Y ]−

)
dω

because
1

2π

π∫

ω=−π

[X]∗+[Y ]−dω = 0. This can be seen directly from the Laurent

series of [X]∗+[Y ]−z−1 (which exists because [X]+[Y ]− has no poles on the unit
circle):

[X]∗+[Y ]−z−1 =

∞∑

i=−∞
γiz

i

Because [X]+ only consists of a direct feed through term and anti-causal terms and
[Y ]− is anti-causal, we have γi = 0 for all i ≤ −1. Using the residual theorem (see,
e.g., [143]), we have

1

2π

π∫

ω=−π

[X]∗+[Y ]−dω =

∮

|z|=1

[X]∗+[Y ]−z−1dz = γ−1 = 0
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Hence (A.6) is minimized subject to W ∈ RHmu×mr
∞ if and only if W satisfies

Geu,oWGrs,co = −[G∗
eu,iGesG

∗
rs,ci]+

Because G†
eu,o and G†

rs,co are stable and Geu,oG
†
eu,o = I and G†

rs,coGrs,co = I, a
stable transfer function W which minimizes (A.6) —and thus (A.4)— is given by

W = −G†
eu,o[G

∗
eu,iGesG

∗
rs,ci]+G†

rs,co

Filling this W in (A.6) directly yields the minimal value of the cost-function given
by (A.5), which completes the proof. �



Appendix B

The Causal Wiener

state-space filter and

relation with LQG

B.1 Introduction

The goal of this report is to twofold:

1. to derive a state-space expression of the Causal Wiener filter;

2. to proof that the internal model controller with the Causal Wiener filter is
equivalent to the LQG controller.

To achieve these goals, we start in Section B.2 with a brief review on calculus with
state-space realizations. We refer to [24,36,85,186] for more details.

B.2 Calculus with state-space realizations

Relation between transfer function and state-space models. Let

y(k) = P (z)u(k)

with P given by the following state-space realization

P ∼
[

A B

C D

]

Then, the input-output relation between u(k) and y(k) is given by

x(k + 1) = Ax(k) + Bu(k) (B.1)

y(k) = Cx(k) + Du(k) (B.2)
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and the transfer function matrix of P is

P = D + C(zI −A)−1B

= D + CBz−1 + CABz−2 + CA2Bz−3 + · · ·
with z the unit shift-forward operator in time-domain and a complex-valued number
in frequency domain.

The input-output relation (B.1) is given in a causal-form. If A is nonsingular,
the same input-output relation can be given in the anti-causal form. Therefore, let
us rewrite (B.1) as

x(k) = A−1x(k + 1)−A−1Bu(k).

Now, let us define x̃(k) = x(k + 1), such that we have

x̃(k − 1) = A−1x̃(k)−A−1Bu(k)

and (B.2) rewrites as

y(k) = Cx̃(k − 1) + Du(k)

= CA−1x̃(k) + (D − CA−1B)u(k).

Finally, writing x̃(k) as x(k) yields the following anti-causal state-space description
of (B.1),(B.2)

x(k − 1) = A−1x(k)−A−1Bu(k)

y(k) = CA−1x(k) + (D − CA−1B)u(k).

For ease of notation, this anti-causal state-space description is written as

P ∼
[

A−1 −A−1B

CA−1 D − CA−1B

]

ac

And thus, if A is nonsingular P can be written as

P = − CA−1(z−1I −A−1)−1A−1B + (D − CA−1B)

= · · · − CA−3Bz2 − CA−2Bz + (D − CA−1B)

The adjoint operator. Let

P ∼
[

A B

C D

]

then the adjoint of P is given by

P ∗ = BT (z−1I −AT )−1CT + DT

thus

P ∗ ∼
[

AT CT

BT DT

]

ac

If, A is nonsingular, then a causal state-space realization of P ∗ is given by

P ∗ ∼
[

A−T −A−T CT

BT A−T DT −BT A−T CT

]
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Similarity transformation. Let

P ∼
[

A B

C D

]

P ′ ∼
[

TAT−1 TB

CT−1 D

]

with T any nonsingular matrix, then

P ′ = P

and P ′ is said to be equal to P up to a similarity transformation T .

Parallel and series connections. Let

P1 ∼
[

A1 B1

C1 D1

]

P2 ∼
[

A2 B2

C2 D2

]

then

P1P2 ∼




A2 0 B2

B1C2 A1 B1D2

D1C2 C1 D1D2




P1 + P2 ∼




A1 0 B1

0 A2 B2

C1 C2 D1 + D2




Linear Fractional Transformation — feedback connection. Let

P ∼




A B1 B2

C1 D11 D12

C2 D21 0




C ∼
[

Ac Bc

Cc Dc

]

then the lower LFT (linear fractional transformation) is given by

P11 + P12(I − CP22)
−1CP21 ∼




A + B2DcC2 B2Cc B1 + B2DcD21

BcC2 Ac BcD21

C1 + D12DcC2 D12Cc D11 + D12DcD21




which is the feedback connection of P and C as depicted in Figure B.1.
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PSfrag replacements

P

C

Figure B.1: Lower LFT connection of P and C.

(Pseudo) inverse model. Let

P ∼
[

A B

C D

]

and

P † ∼
[

A−BD†C BD†

−D†C D†

]

then

• if D is nonsingular, D† = D−1 and P † = P−1 is the inverse of P , i.e.
PP−1 = P−1P = I;

• if DT D is nonsingular, D† = (DT D)−1DT and P † is a left-inverse of P , i.e.
P †P = I;

• if DDT is nonsingular, D† = DT (DDT )−1 and P † is a right-inverse of P , i.e.
PP † = I.

The (anti-)causality operator. Let P1 and P2 be strictly stable, i.e. A1 and
A2 has all eigenvalues inside the unit-disk. Then

P1P
∗
2 = [P1P

∗
2 ]+ + [P1P

∗
2 ]−

with

[P1P
∗
2 ]+ ∼

[
A1 B1D

T
2 + A1X12C

T
2

C1 D1D
T
2 + C1X12C

T
2

]

[P1P
∗
2 ]− ∼

[
AT

2 CT
2

D1B
T
2 + C1X12A

T
2 0

]

ac

with X12 the solution of the Sylvester equation

X12 −A1X12A
T
2 = B1B

T
2
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Analogue, the following holds too

P ∗
2 P1 = [P ∗

2 P1]+ + [P ∗
2 P1]−

with

[P ∗
2 P1]+ ∼

[
A1 B1

DT
2 C1 + BT

2 X21A1 DT
2 D1 + BT

2 X21B1

]

[P ∗
2 P1]− ∼

[
AT

2 CT
2 D1 + AT

2 X21B1

BT
2 0

]

ac

with X21 the solution of the Sylvester equation

X21 −AT
2 X21A1 = CT

2 C1

These results are obtained by a partial fraction expansion of P1P
∗
2 and P ∗

2 P1 re-
spectively.

Inner-outer (outer-inner) factorization. The inner-outer factorization of P
is given by

P = PiPo

with P ∗
i Pi = I and Po has a stable right inverse. Let X = XT > 0 be the stabilizing

solution to the Riccati equation

X = AT XA− (AT XB + CT D)(BT XB + DT D)−1(AT XB + CT D) + CT C

and Y be a square-root of X, such that Y T Y = X. Let the QR factorization be
given

[
D C

Y B Y A

]
=

[
Di Ci

Bi Ai

][
Do Co

0 Y

]

Then

Pi ∼
[

Ai Bi

Ci Di

]

Po ∼
[

A B

Co Do

]

Analogue to the inner-outer factorization, the outer-inner factorization of P is
given by

P = PoPi

with Po has a stable left inverse and PiP
∗
i = I. Let X = XT > 0 be the stabilizing

solution to the Riccati equation

X = AXAT − (AXCT + BDT )(CXCT + DDT )−1(AXCT + BDT )T + BBT
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and Y be a square-root of X, such that Y Y T = X. Let the RQ-factorization be
given

[
D CY

B AY

]
=

[
Do 0

Bo Y

][
Di Ci

Bi Ai

]

Then

Po ∼
[

A Bo

C Do

]

Pi ∼
[

Ai Bi

Ci Di

]

B.3 State-space realization of the Causal Wiener

filter

Using these results, a state-space realization of the Causal Wiener filter can be
derived.

The plant is as in Chapter 2 and given by

G(q−1) =

[
Ges(q

−1) Geu(q−1)

Grs(q
−1) Gru(q−1)

]
∼




A Bs Bu

Ce Des Deu

Cr Drs 0


 (B.3)

with Ges the transfer from the disturbance input to the performance output (pri-
mary path), Geu the transfer from the control input to the performance output
(secondary path), Grs the transfer from the disturbance input to the measured
output (detector path) and Gru the transfer from the control input to the mea-
sured output (feedback path). The assumption that Dru = 0 is standard and
satisfied in almost all application due to discretization delay.

It has been shown in Appendix A that the Causal Wiener filter is given by

W = −G†
eu,o[G

∗
eu,iGesG

∗
rs,ci]+G†

rs,co (B.4)

with (.)∗ and [.]+ are the complex conjugate transpose and the causality operator
respectively. It has been shown by means of the Youla parameterization that the
IMC controller

C = (I + WGeu)−1W

with W the Causal Wiener filter optimally minimizes the H2-norm of the LFT
closed-loop connection between G and C.

First, we will derive the state-space realizations for the inner and outer factors.
Then, we will derive the state-space realization of the Causal Wiener filter W and
the IMC controller

C = (I + WG22)
−1W

The following section, shows that this controller is equivalent to the LQG controller.



B.3 State-space realization of the Causal Wiener filter 171

B.3.1 IO-factorization of Geu

Let IO-factorization of Geu be given by

Geu = Geu,iGeu,o

with

Geu,i ∼
[

Ai
eu Bi

eu

Ci
eu Di

eu

]

Geu,o ∼
[

A Bu

Co
eu Do

eu

]

Then Ai
eu, Bi

eu, Ci
eu, Di

eu, Co
eu, Do

eu can be calculated as follows. Let Peu = PT
eu ≥ 0

be a solution of the discrete algebraic Riccati equation

Peu = AT PeuA− (AT PeuBu + CT
e Deu)(BT

u PeuBu + DT
euDeu)−1·

(AT PeuBu + CT
e Deu)T + CT

e Ce (B.5)

Further let Yeu be an upper triangular matrix such that

Y T
euYeu = Peu (B.6)

Then, the following QR-decomposition can be calculated from which the matrices
to be calculated can be read off.

[
Deu Ce

YeuBu YeuA

]
=

[
Di

eu Ci
eu

Bi
eu Ai

eu

][
Do

eu Co
eu

0 Yeu

]
(B.7)

Because

[
Di

eu Ci
eu

Bi
eu Ai

eu

]
is orthogonal, we have the following relations

DiT
euDeu + BiT

euYeuBu = Do
eu (B.8)

DiT
euCe + BiT

euYeuA = Co
eu (B.9)

CiT
euDeu + AiT

euYeuBu = 0 (B.10)

CiT
euCe + AiT

euYeuA = Yeu (B.11)

and by ‘squaring’ (B.7) we get

[
DT

euDeu + BT
u Y T

euYeuBu DT
euCe + BT

u Y T
euYeuA

CT
e Deu + AT Y T

euYeuBu CT
e Ce + AT Y T

euYeuA

]
=

=

[
DoT

eu Do
eu DoT

eu Co
eu

CoT
eu Do

eu CoT
eu Co

eu + Y T
euYeu

]
(B.12)



172 Causal Wiener state-space filter

B.3.2 OI-factorization of Grs

Let OI-factorization of Grs be given by

Grs = Grs,coGrs,ci

with

Grs,ci ∼
[

Ai
rs Bi

rs

Ci
rs Di

rs

]

Grs,co ∼
[

A Bo
rs

Cr Do
rs

]

Then Ai
rs, B

i
rs, C

i
rs, D

i
rs, B

o
rs, D

o
rs can be calculated as follows. Let Prs = PT

rs ≥ 0
be a solution of the discrete algebraic Riccati equation

Prs = APrsA
T − (APrsC

T
r + BsD

T
rs)(CrPrsC

T
r + DrsD

T
rs)

−1(APrsC
T
r + BsD

T
rs)

T +

+ BsB
T
s (B.13)

Further let Yrs be a lower triangular matrix such that

YrsY
T
rs = Prs (B.14)

Then, the following LQ-decomposition can be calculated from which the matrices
to be calculated can be read off.

[
Drs CrYrs

Bs AYrs

]
=

[
Do

rs 0

Bo
rs Yrs

][
Di

rs Ci
rs

Bi
rs Ai

rs

]
(B.15)

Because

[
Di

rs Ci
rs

Bi
rs Ai

rs

]
is orthogonal, we have the following relations

DrsD
iT
rs + CrYrsC

iT
rs = Do

rs (B.16)

DrsB
iT
rs + CrYrsA

iT
rs = 0 (B.17)

BsD
iT
rs + AYrsC

iT
rs = Bo

rs (B.18)

BsB
iT
rs + AYrsA

iT
rs = Yrs (B.19)

and by ‘squaring’ (B.15) we get

[
DrsD

T
rs + CrYrsY

T
rsC

T
r DrsB

T
s + CrYrsY

T
rsA

T

BsD
T
rs + AYrsY

T
rsC

T
r BsB

T
s + AYrsY

T
rsA

T

]
=

=

[
Do

rsD
oT
rs Do

rsB
oT
rs

Bo
rsD

oT
rs BoT

rs BoT
rs + YrsY

T
rs

]
.(B.20)
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B.3.3 Causal factor [G∗
eu,iGesG

∗
rs,ci]+

First note, that the following holds

G∗
eu,iGesG

∗
rs,ci = [G∗

eu,iGes]+G∗
rs,ci + [G∗

eu,iGes]−G∗
rs,ci

and because G∗
rs,ci is anti-causal only up to a direct feedthrough term, we have

[G∗
eu,iGesG

∗
rs,ci]+ = [[G∗

eu,iGes]+G∗
rs,ci]+

Therefore, we first calculate [G∗
eu,iGes]+.

It can be shown that

[Gi∗
euGes]+ ∼

[
A Bs

DiT
euCe + BiT

euXeuA DiT
euDes + BiT

euXeuBs

]

with Xeu such that the following Lyapunov equation holds

CiT
euCe + AiT

euXeuA = Xeu

Note, that this expression is the same as for Yeu in (B.11), such that we have

Xeu = Yeu

Using this result and (B.9), we have

[G∗
eu,iGes]+ ∼

[
A Bs

Co
eu DiT

euDes + BiT
euYeuBs

]

Now, we are ready to calculate [G∗
eu,iGesG

∗
rs,ci]+. It can be shown that

[[G∗
eu,iGes]+G∗

rs,ci]+ ∼
[

A BsD
iT
rs + AXrsC

iT
rs

Co
eu (DiT

euDes + BiT
euYeuB1)D

iT
rs + Co

euXrsC
iT
rs

]

with Xrs such that the following Sylvester equation holds

B1B
iT
rs + AXrsA

iT
rs = Xrs

Note, that this expression is the same as for Yrs in (B.19), such that we have

Xrs = Yrs

Using this result and (B.18), we have

[G∗
eu,iGesG

∗
rs,ci]+ ∼

[
A Bo

rs

Co
eu Do

es

]

with
Do

es = DiT
euDesD

iT
rs + BiT

euYeuBsD
iT
rs + Co

euYrsC
iT
rs (B.21)
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B.3.4 Calculation of G
†
eu,o[G

∗
eu,iGesG

∗
rs,ci]+

First, note that the right inverse of G†
eu,o is given by

G†
eu,o ∼

[
A−BuDo†

euCo
eu BuDo†

eu

−Do†
euCo

eu Do†
eu

]

with Do†
eu a right inverse of Do

eu.
Then using the rule for series-connection, we obtain

G†
eu,o[G

∗
eu,iGesG

∗
rs,ci]+ ∼




A−BuDo†
euCo

eu BuDo†
euCo

eu BuDo†
euDo

es

0 A Bo
rs

−Do†
euCo

eu Do†
euCo

eu Do†
euDo

es




By evaluating a similarity transformation with T =

[
I −I

0 I

]
, we obtain

Go†
eu[G∗

eu,iGesG
∗
rs,ci]+ ∼




A−BuDo†
euCo

eu 0 BuDo†
euDo

es −Bo
rs

0 A Bo
rs

−Do†
euCo

eu 0 Do†
euDo

es




From which is clear, that the second part of the state is unobservable. Hence, we
may write

Go†
eu[G∗

eu,iGesG
∗
rs,ci]+ ∼

[
A−BuDo†

euCo
eu BuDo†

euDo
es −Bo

rs

−Do†
euCo

eu Do†
euDo

es

]

B.3.5 Calculation of G
†
eu,o[G

∗
eu,iGesG

∗
rs,ci]+G

o†
rs

First, note that the left inverse of G†
rs,co is given by

G†
rs,co ∼

[
A−Bo

rsD
o†
rsCr Bo

rsD
o†
rs

−Do†
rsCr Do†

rs

]

with Do†
rs a left inverse of Do

rs.
Using the rule for series connection, we obtain

Go†
eu[G∗

eu,iGesG
∗
rs,ci]+G†

rs,co ∼



A−BuDo†
euCo

eu −(BuDo†
euDo

es −Bo
rs)D

o†
rsCr (BuDo†

euDo
es −Bo

rs)D
o†
rs

0 A−Bo
rsD

o†
rsCr Bo

rsD
o†
rs

−Do†
euCo

eu −Do†
euDo

esD
o†
rsCr Do†

euDo
esD

o†
rs




Theorem B.1 A state-space realization of the Causal Wiener filter given by (B.4)
is

W ∼




A−BuDo†
euCo

eu −(BuDo†
euDo

es −Bo
rs)D

o†
rsCr (BuDo†

euDo
es −Bo

rs)D
o†
rs

0 A−Bo
rsD

o†
rsCr Bo

rsD
o†
rs

Do†
euCo

eu Do†
euDo

esD
o†
rsCr −Do†

euDo
esD

o†
rs




(B.22)
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with Co
eu, Do

eu given by (B.7), Bo
rs, Do

rs given by (B.15) and Do
es given by (B.21).

Proof: The proof is obtained by following the reasoning in this section. �

Note, that the Causal Wiener filter is of order 2 times the system order.

B.3.6 Feedback connection of G
†
eu,o[G

∗
eu,iGesG

∗
rs,ci]+G

†
rs,co and

Gru

First, note that

Gru ∼
[

A Bu

Cr 0

]

Then using, the rule for a negative feedback connection of
W = −G†

eu,o[G
∗
eu,iGesG

∗
rs,ci]+G†

rs,co with Gru, we obtain

C = (I + WGru)−1W ∼



A−BuDo†
euCo

eu −(BuDo†
euDo

es −Bo
rs)D

o†
rsCr (BuDo†

euDo
es −Bo

rs)D
o†
rsCr

0 A−Bo
rsD

o†
rsCr Bo

rsD
o†
rsCr

−BuDo†
euCo

eu −BuDo†
euDo

esD
o†
rsCr A + BuDo†

euDo
esD

o†
rsCr

−Do†
euCo

eu −Do†
euDo

esD
o†
rsCr Do†

euDo
esD

o†
rsCr

−(BuDo†
euDo

es −Bo
rs)D

o†
rs

−Bo
rsD

o†
rs

−BuDo†
euDo

esD
o†
rs

−Do†
euDo

esD
o†
rs




By performing a similarity transformation by T =




I

I −I

I


, we obtain

C = (I + WGru)−1W ∼


A − BuDo†
euCo

eu −(BuDo†
euDo

es − Bo
rs)D

o†
rsCr 0 −(BuDo†

euDo
es − Bo

rs)D
o†
rs

BuDo†
euCo

eu A + (BuDo†
euDo

es − Bo
rs)D

o†
rsCr 0 (BuDo†

euDo
es − Bo

rs)D
o†
rs

−BuDo†
euCo

eu −BuDo†
euDo

esD
o†
rsCr A −BuDo†

euDo
esD

o†
rs

−Do†
euCo

eu −Do†
euDo

esD
o†
rsCr 0 −Do†

euDo
esD

o†
rs




from which is clear, that the last part of the state is unobservable. Hence, we may
write

C = (I + WGru)−1W ∼


A − BuDo†
euCo

eu −(BuDo†
euDo

es − Bo
rs)D

o†
rsCr −(BuDo†

euDo
es − Bo

rs)D
o†
rs

BuDo†
euCo

eu A + (BuDo†
euDo

es − Bo
rs)D

o†
rsCr (BuDo†

euDo
es − Bo

rs)D
o†
rs

−Do†
euCo

eu −Do†
euDo

esD
o†
rsCr −Do†

euDo
esD

o†
rs



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Again, perform a similarity transformation with T =

[
I I

0 I

]
, which yields

C = (I + WGru)−1W ∼


A 0 0

BuDo†
euCo

eu A + (BuDo†
euDo

es − Bo
rs)D

o†
rsCr − BuDo†

euCo
eu (BuDo†

euDo
es − Bo

rs)D
o†
rs

−Do†
euCo

eu Do†
eu(Co

eu − Do
esD

o†
rsCr) −Do†

euDo
esD

o†
rs




from which is clear that the first part of the state is uncontrollable (but stable).
Hence, we may write

C = (I + WGru)−1W ∼
[

A + (BuDo†
euDo

es − Bo
rs)D

o†
rsCr − BuDo†

euCo
eu (BuDo†

euDo
es − Bo

rs)D
o†
rs

Do†
eu(Co

eu − Do
esD

o†
rsCr) −Do†

euDo
esD

o†
rs

]
(B.23)

B.4 Relation between Causal Wiener and LQG

Recall from Theorem 2.2 on page 47 that, given the assumptions in the theorem,
the LQG controller is given the following relations:

Let Prs = PT
rs > 0 and Peu = PT

eu > 0 be the stabilizing solutions to the
following Riccati equations

Prs =APrsA
T−(APrsC

T
r + Srs)(CrPrsC

T
r + Rrs)

−1(APrsC
T
r + Srs)

T + Qs,(B.24)

Peu =ATPeuA−(AT PeuBu+Seu)(BT
u PeuBu+Reu)−1(AT PeuBu+Seu)T + Qe.(B.25)

Let

Feu = (BT
u PeuBu + Reu)−1(BT

u PeuA + ST
eu), (B.26)

F o
eu = (BT

u PeuBu + Reu)−1(BT
u PeuBs + DT

euDes) (B.27)

and

Krs = (APrsC
T
r + Srs)(CrPrsC

T
r + Rrs)

−1, (B.28)

Ko
rs = (FeuPrsC

T
r + F o

euDT
rs)(CrPrsC

T
r + Rrs)

−1, (B.29)

Then, the LQG controller is given by
[

x̂(k + 1|k)

u(k)

]
=

[
A + BuKo

rsCr −BuFeu −KrsCr BuKo
rs −Krs

Feu −Ko
rsCr −Ko

rs

]

·
[

x̂(k|k − 1)

y(k)

]
(B.30)

Comparing the state-space matrices in (B.30) with (B.23), we conclude that if the
following equalities hold

Feu = Do†
euCo

eu (B.31)

Krs = Bo
rsD

o†
rs (B.32)

Ko
rs = Do†

euDo
esD

o†
rs (B.33)
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the LQG controller given by (B.30) is equivalent to the IMC controller with the
Causal Wiener filter, given by (B.23).

First, note that the Riccati equations (B.24) and (B.25) are the same as the
Riccati equations (B.5) and (B.13) respectively, to compute the inner-outer factor-
ization of Geu and outer-inner factorization of Grs.

Since, Peu = Y T
euYeu we can write

Feu = (BT
u PeuBu + Reu)−1(BT

u PeuA + ST
eu)

= (BT
u Y T

euYeuBu + DT
euDeu)−1(BT

u Y T
euYeuA + DT

euCe)

Using the relations in the (1,1) and (1,2) block of (B.12) we obtain

Feu = (DoT
eu Do

eu)−1DoT
eu Co

eu

= Do†
euCo

eu

Similarly, since Prs = YrsY
T
rs and using the relations in the (1,1) and (2,1) blocks

of (B.20) we obtain

Krs = (APrsC
T
r + Srs)(CrPrsC

T
r + Rrs)

−1,

= (AYrsY
T
rsC

T
r + BsD

T
rs)(CrYrsY

T
rsC

T
r + DrsD

T
rs)

−1,

= Bo
rsD

oT
rs (Do

rsD
oT
rs )−1,

= Bo
rsD

o†
rs.

Since Ko
rs is depending on F o

eu, let us first rewrite F o
eu as follows

F o
eu = (BT

u PeuBT
u + Reu)−1(BT

u PeuBs + DT
euDes),

= (DoT
eu Do

eu)−1(BT
u Y T

euYeuBs + DT
euDes).

Then, filling in the expressions for Feu and F o
eu we obtain for Ko

rs

Ko
rs = (FeuPrsC

T
r + F o

euDT
rs)(CrPrsC

T
r + Rrs)

−1,

= (Do†
euCo

euYrsY
T
rsC

T
r + (DoT

eu Do
eu)−1(BT

u Y T
euYeuBs + DT

euDes)D
T
rs)(D

o
rsD

oT
rs )−1

Using the relations of Deu and YeuBu given by (B.7) we can write

Ko
rs = Do†

eu(Co
euYrsY

T
rsC

T
r (Do

rsD
oT
rs )−1 + DiT

euDesD
T
rs(D

o
rsD

oT
rs )−1+

+ BiT
euYeuBsD

T
rs(D

o
rsD

oT
rs )−1)

Furthermore, using the relations of Drs and CrYrs given by (B.15) we can write

Ko
rs = Do†

eu(Co
euYrsC

iT
rs + DiT

euDesD
iT
rs + BiT

euYeuBsD
iT
rs )Do†

rs

= Do†
euDo

esD
o†
rs

where the latter equality follows from (B.21). Hence, we may conclude, that indeed
(B.31)–(B.33) hold and thus the state-space expression of the LQG controller (B.30)
is equivalent to (B.23).

B.5 Conclusions

A state-space representation of the Causal Wiener filter was derived, which is of
order 2 times the system order. Further it is proven that the IMC controller using
the Causal Wiener filter, is similarly equivalent to the LQG controller.
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Appendix C

Efficient state-space

filtering using input- and

output normal forms and

application to FxLMS

C.1 Introduction

Consider the following state-space controller equations

x(k + 1) = Ax(k) + Bu(k) (C.1)

y(k) = Cx(k) + Du(k) (C.2)

with u(k) ∈ Rm the input to the controller , x(k) ∈ Rn the state of the controller,
y(k) ∈ Rl the output of the controller (the control signal) and A,B,C and D of
appropriate dimensions. To calculate the control signal y(k) and the state-update
x(k + 1) from u(k) and x(k), one can use (C.1) and (C.2) directly. However,
the matrix-vector multiplication Ax(k) needs (2n − 1)n floating point operations
(flops1). This can be computationally complex if n is large, as in noise and vibration
control.

The computational complexity can be reduced by using another parameteriza-
tions of the controller. In this report we show how the computational complexity
can be reduced via the output-normal (Section C.2) and input-normal parameteri-
zations (Section C.3). Section C.4 compares the computational complexity of the
filter iteration. Section C.5 shows how the input-normal parameterization can be
used to reduce the computational complexity of the Filtered-X LMS algorithm.
Section C.6 concludes the report.

1One flop is one multiplication or one addition of two floating point numbers.
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C.2 Efficient filtering via output-normal parame-
terization

To calculate the output-normal parameterization, the state-space model (C.1),(C.2)
should be in output-normal form, i.e. the Observability grammian should be the
identity matrix:

AT A + CT C = I

In general the state-space model (e.g. obtained from subspace identification) is
not in output-normal form. But, if the state-space model is observable, then the
state-space model can be transformed to the output-normal form via a similarity
transformation:

xT (k + 1) = AT xT (k) + BT u(k), xT (0) = Tx0 (C.3)

y(k) = CT xT (k) + DT u(k) (C.4)

with xT (k) = Tx(k), AT = TAT−1, BT = TB, CT = CT−1, DT = D and
T ∈ Rn×n a non-singular matrix (determined by the observability grammian of the
state-space model which is not in output-normal form).

Now, suppose the state-space model (C.1),(C.2) is in output-normal form.
Then, the pair (A,C) can be decomposed in a series of rotations. Let us define the
2× 2 matrix U(α)

U(α) =

[
−α

√
1− α2

√
1− α2 α

]

with the scalar α ∈ [−1, 1]. Then, (A,C) is decomposed in the following way
[

C

A

]
= T1(θ(1))T2(θ(2)) · · ·Tnl(θ(nl))

[
0

In

]
(C.5)

with Ti(θ(i)) given as:

T1(θ(1)) =




In−1 0 0

0 U(θ(1)) 0

0 0 Il−1


 ∈ R(n+l)×(n+l)

...

Tl(θ(l)) =

[
In+l−2 0

0 U(θ(l))

]

Tl+1(θ(l + 1)) =




In−2 0 0

0 U(θ(l + 1)) 0

0 0 Il




...

T2l(θ(2l)) =




In+l−1 0 0

0 U(θ(2l)) 0

0 0 1



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...

T(n−1)l+1(θ((n− 1)l + 1)) =

[
U(θ((n− 1)l + 1)) 0

0 In+l−2

]

...

Tnl(θ(nl)) =




Il−1 0 0

0 U(θ(nl)) 0

0 0 In−1




with θ ∈ Rnl a vector with reflection coefficient. The parameterization (θ,B,D) is
called the output-normal parameterization. Using the output-normal parameteri-
zation yk and xk+1 can be calculated in the following way:

[
yk

xk+1

]
= T1(θ(1))T2(θ(2)) · · ·Tnl(θ(nl))

[
0

xk

]
+

[
D

B

]
uk (C.6)

Because a multiplication with Ti(θ(i)) is just a 2-dimensional rotation, it can
be performed by 2 additions and 4 multiplications. Hence, the computational
complexity of the nl multiplications with Ti is 2nl additions and 4nl multiplications.

The computational complexity of the multiplications Axk and Cxk in (C.1) and
(C.2) are (n + l)(n− 1) additions and (n + l)n multiplications.

So, in the case 6nl < (n + l)(2n − 1), the number of floating point operations
for the output-normal form controller is less than for the state-space controller of
(C.1),(C.2). In this case, we have

6nl < (n + l)(2n− 1) = 2n2 + 2nl − n− l

⇐⇒
4nl + l < 2n2 − n

⇐⇒

l <
n(2n− 1)

4n + 1

In case of high orders n, the expression can be simplified by l <
n

2
.

C.3 Efficient filtering via input-normal parame-

terization

The input-normal parameterization is analogue to the output-normal parameter-
ization. Now, the state-space model (C.1),(C.2) should be in input-normal form,
which means the Controllability grammian should be the identitiy matrix:

AAT + BBT = I

Every controllable state-space model can be transformed to the input-normal form
via a similarity transformation.
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Now, suppose the state-space model (C.1),(C.2) is in input-normal form. Then,
the pair (A,B) can be decomposed in a series of rotations in the following way

[
B A

]
=
[

0 In

]
Tmn(θ(mn))Tmn−1(θ(mn− 1)) · · ·T1(θ(1)) (C.7)

with Ti(θ(i)) given as:

T1(θ(1)) =




In−1 0 0

0 U(θ(1)) 0

0 0 Im−1


 ∈ R(n+m)×(n+m)

...

Tm(θ(m)) =

[
In+m−2 0

0 U(θ(m))

]

Tm+1(θ(m + 1)) =




In−2 0 0

0 U(θ(m + 1)) 0

0 0 Im




...

T2m(θ(2m)) =




In+m−1 0 0

0 U(θ(2m)) 0

0 0 1




...

T(n−1)m+1(θ((n− 1)m + 1)) =

[
U(θ((n− 1)m + 1)) 0

0 In+m−2

]

...

Tnm(θ(nm)) =




Im−1 0 0

0 U(θ(nm)) 0

0 0 In−1




with θ ∈ Rnm a vector with reflection coefficient. The parameterization (θ, C,D)
is called the input-normal parameterization. Using the input-normal parameteri-
zation y(k) and x(k + 1) can be calculated in the following way:

y(k) =
[

D C
]
[

u(k)

x(k)

]

x(k + 1) =
[

0 In

]
TmnTmn−1 · · ·T1

[
u(k)

x(k)

]

The computational complexity of the state update via the rotations is 6nm flops,
whereas using (C.1) explicitly it is n(2n + 2m − 1) flops. So, in the case 6nm <
n(2n+2m− 1), the number of floating point operations for the input-normal form
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Table C.1: Computational complexity of one iteration of the state-space equations,
the output-normal and the input-normal parameterization.

state-space output-normal input-normal

# additions (n + l)(n + m − 1) 2nl + (n + l)m 2nm + l(m + n − 1)

# multiplications (n + l)(n + m) 4nl + (n + l)m 4nm + l(m + n)

total # of flops (n + l)(2n + 2m − 1) 6nl + 2(n + l)m 6nm + l(2n + 2m − 1)

Table C.2: Complexity of one filter iteration for different parameterizations (l out-
puts, m inputs, n is the state-dimension and I the FIR filter length).

Method # coefficients # memory # flops

(×8 Bytes)

FIR lmI l+mI lm(2I-1)

Full matrix transferf. lm(2n+1) (m+l)(n+1) lm(6n+1)

Full state-space n(n+m+l)+lm l+m+2n (n+l)(2n+2m-1)

Output normal 2nl+(l+n)m l+m+n+1 6nl+2(n+l)m

Input normal 2nm+l(n+m) l+m+n+1 6nm+l(2n+2m-1)

controller is less than for the state-space controller of (C.1). In this case, we have

6nm < n(2n + 2m− 1)

< 2n2 + 2nm− n

⇐⇒
4nm < 2n2 − n

⇐⇒

m <
(2n− 1)

4

In case of high orders n, the expression can be simplified by m <
n

2
.

C.4 Comparison

The computational complexity of the state-space equations and the output-normal
and input-normal parameterizations is summarized in Table C.1.

Table C.2 compares different filter parameterizations, w.r.t. number of coeffi-
cients, necessary memory and computational complexity.

Table C.1–C.3 illustrate that state-space filtering can be evaluated at significant
lower computational complexity using input-normal and output-normal parameter-
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Table C.3: Number of flops of a state-space (SS), output-normal (ON) and input-
normal (IN) iteration for different dimensions and orders.

m = 1,l = 1

order n SS ON IN

2 15 18 17

4 45 34 33

8 153 66 65

16 561 130 129

32 2145 258 257

64 8385 514 513

m = 1, l = 4

order n SS ON IN

2 30 60 32

4 72 112 60

8 204 216 116

16 660 424 228

32 2340 840 452

64 8772 1672 900

m = 4, l = 1

order n SS ON IN

2 33 36 59

4 75 64 111

8 207 120 215

16 663 232 423

32 2343 456 839

64 8775 904 1671

m = 4, l = 4

order n SS ON IN

2 66 96 92

4 120 160 156

8 276 288 284

16 780 544 540

32 2556 1056 1052

64 9180 2080 2076

izations. In general, we can conclude

if m < l & m < n
2 → input-normal

if l < m & l < n
2 → output-normal

else → state-space

C.5 Application to Filtered-X LMS

This section shows how the input-normal parameterization can be used to efficiently
evaluate the filtering of the reference signal in the multi-reference Filtered-X LMS
algorithm. Let
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mr: number of reference signals
mu: number of control signals
me: number of error signals

Ĝeu: me ×mu model of secondary path

ns: number of states sec. path model Ĝeu

Is: number of coefficients of FIR realization of sec. path model
I: number of coefficients of adaptive filter
θ(k): mumrI dimensional vector with controller coefficients
r(k): mr dimensional vector with reference signal
φ(k): mrI dimensional vector with samples from reference signal r(k)
e(k): me dimensional vector with measured error signal

Then, the update equation of the Filtered-X LMS algorithm is given by

θ(n + 1) = θ(k)− µ[ĜT
eu(q−1)⊗ φ(k)]e(k)

with µ > 0 a scalar stepsize parameter.
To evaluate ĜT

eu(q−1)⊗ φ(k) every sampling instant n we have to evaluate




Ĝeu,11

...

Ĝeu,me1

...

Ĝeu,memu




ri(k), i = 1, · · · ,mr

This filter, i.e. the vector stacking of the secondary path model, can be realized as a
state-space filter of order ns (so the state has not to be increased as implicitly done
in [128]). This single-input multi-output state-space filter can be transformed to an
input-normal parameterization, which will reduce the computational complexity.

Table C.4 shows the computational complexity of the Filtered-X LMS algo-
rithm using the FIR and the input-normal parameterization. Here we assumed
that the FIR filter length of the controller is the same as the FIR length of the
secondary path model.

Note, that for both cases the computational complexity is linear in the number
of reference signals mr. Further note, that (also for both cases), the computational
complexity (approximately) depends on the product of me and mu.

The input-normal filter version is computationally more efficient than the FIR
filter version of the Filtered-X LMS algorithm if

ns(6mr + 2mrmemu) + mumrI(2me + 3) + mu(mrme − 1) <

< mumrI(4me + 3)−mu(mrme + 1) ⇐⇒
ns(6mr + 2mrmemu) < 2mrmemuI − 2mrmemu ⇐⇒

ns(3 + memu) < memu(I − 1) ⇐⇒
ns < 3+memu

memu
(I − 1)
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Table C.4: Number of flops of the Filtered-X LMS algorithm using an FIR and an
input-normal filter to generate the regression vector.

FIR input-normal

Filter regression mr((2I − 1)memu) mr(ns(6 + 2memu) + memu)
Update controller (2me + 1)mumrI (2me + 1)mumrI
Calc. control 2mumrI − mu 2mumrI − mu

Total mumrI(4me + 3)+ nsmr(6 + 2memu)+
−mu(mrme + 1) +mumrI(2me + 3) + mu(mrme − 1)

Total (approx.) 4mrmemuI ns(6mr + 2mrmemu) + 2mrmemuI

To get insight how much reduction is obtained by the input-normal parameter-
ization, the ratio of the flops necessary for the input-normal parameterization and
the FIR filter are calculated for different values of mr,me and mu, i.e.

mr(ns(6 + 2memu) + memu)

mr((2I − 1)memu)
× 100%

To get insight in the reduction of the complete Filtered-X LMS algorithm, we also
calculated the ratio between the flops necessary for the Filtered-X LMS algorithm
using the input-normal parameterization and for using the FIR filter, i.e.

nsmr(6 + 2memu) + mumrI(2me + 3) + mu(mrme − 1)

mumrI(4me + 3)−mu(mrme + 1)
× 100%

The results are given in Table C.5.
From Table C.5 it can be concluded, that indeed reduction of the computational

complexity can be obtained by using the input-normal parameterization, especially
for low orders ns and large number of FIR coefficients Is. Table C.6 shows the
number of kiloflops per sample for the Filtered-X LMS algorihm using the input-
normal and FIR filter implementations. Note, that this is obtained for the standard
Filtered-X LMS algorithm without normalization of the stepsize.

C.6 Conclusions

Output-normal and input-normal parameterizations were proposed to efficiently
evaluate state-space filter iterations. It was derived that for filters of order n with
m inputs and l outputs, the following choice leads to most efficient implementation

if m < l & m < n
2 → input-normal

if l < m & l < n
2 → output-normal

else → state-space

It was also shown, that the input-normal parameterization can be used to reduce
the computational complexity of filtering the reference signal in the Filtered-X LMS
algorithm. In case, the length of the FIR controller and the FIR filter model of
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Table C.5: For every entry, the first number is the ratio (in %) between the flops
for input-normal and FIR filtering, the second number is the ratio between the
flops for Filtered-X LMS using input-normal and FIR filtering.

mu = 1,me = 1
Is =

ns = 100 200 300 400 500

20 81/95 40/83 27/79 20/77 16/76
40 161/118 81/94 54/87 40/83 32/81
60 242/140 121/106 80/94 60/89 48/85
80 322/163 161/117 107/102 80/94 64/90
100 403/186 201/129 134/110 100/100 80/94

mu = 1,me = 8
Is =

ns = 100 200 300 400 500

20 28/67 14/61 9.3/59 7.0/58 5.6/57
40 56/80 28/67 19/63 14/61 11/59
60 83/92 42/73 28/67 21/64 17/62
80 111/105 55/80 37/71 28/67 22/64
100 139/118 69/86 46/75 35/70 28/67

mu = 4,me = 4
Is =

ns = 100 200 300 400 500

20 24/68 12/63 8.1/61 6.1/61 4.9/60
40 48/78 24/68 16/65 12/63 9.6/62
60 72/88 36/73 24/68 18/66 14/64
80 96/98 48/78 32/71 24/68 19/66
100 120/108 60/83 40/75 30/71 24/68

mu = 6,me = 8
Is =

ns = 100 200 300 400 500

20 22/64 11/59 7.3/58 5.4/57 4.4/56
40 43/74 22/64 14/61 11/59 8.6/58
60 65/84 32/69 22/64 16/62 13/60
80 86/94 43/74 29/67 21/64 17/62
100 107/103 54/79 36/71 27/67 21/64
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Table C.6: Number of kiloflops per sample of Filtered-X LMS
using input-normal and FIR filtering.
mu = 6,me = 8,mr = 8

Is =
ns = 100 200 300 400 500

20 108/168 199/336 290/504 381/672 473/840
40 124/168 215/336 307/504 398/672 489/840
60 141/168 232/336 323/504 414/672 505/840
80 157/168 248/336 339/504 430/672 522/840
100 173/168 264/336 356/504 447/672 538/840

the secondary path are both of length I, then an input-normal parameterization of
order ns with

ns <
3 + memu

memu
(I − 1)

will reduce the computational complexity (where me and mu are the number of
error and control signals respectively, no matter the number of reference signals).



Appendix D

A frequency domain

subspace algorithm for

mixed causal, anti-causal

LTI systems

Abstract

The paper extends the subspace identification method to estimate state-space
models from frequency response function (FRF) samples, proposed by [113]
for mixed causal/anti-causal systems, and shows that other frequency domain
subspace algorithms can be extended similarly. The method is demonstrated by
simulation experiments.

keywords: frequency domain identification, subspace method, descriptor
system, Kronecker canonical form, state-space model

This paper has been published before in [63].

D.1 Introduction

Subspace identification methods are powerful methods in identifying linear multi
variable systems. This is because these methods are based on numerically reliable
algorithms as SVD and QR-decomposition and directly yield a state-space model.
Advantages of a state-space model over a transfer function model are e.g. that a
resonance mode of the system, which is observed at multiple outputs, is modeled
only once and its numerical sensitivity to round-off errors is in general significantly
smaller (see e.g. [68]). Further, most modern control methods are based on state-
space models.

189



190 Frequency domain causal/anti-causal subspace

Originally, subspace identification methods were based on time-domain mea-
sured input/output data [177, 181]. Not much time later, subspace identification
methods were proposed which are based on frequency-domain data: Fourier trans-
formed input/output data [112] or FRF samples [113]; see [137] for new results on
consistency and convergence. Using frequency domain data the number of sam-
ples may be significantly reduced, especially in case of systems with (many) widely
separated resonance modes (e.g. stiff systems and systems with a high number of
resonances like acoustical systems) and a non-uniform frequency grid can be ex-
ploited to accurately model the system at specific frequencies (see [138] for more
details on system identification in the frequency domain).

Using frequency domain subspace identification methods systems with anti-
causal/unstable modes can be identified too, which is an advantage over time-
domain subspace algorithms. However, to study the causal and/or anti-causal
behavior, additional post-processing has to be a applied to separate the causal and
anti-causal modes. This separation is also necessary, when only a model of the
causal part of the system has to be used for control/filter design, such as in the
Causal Wiener filter, see e.g. [57].

This paper proposes a frequency domain subspace method to identify a state-
space model of the causal/stable part and the anti-causal/unstable part of a system
directly. The method is obtained by adjusting Algorithm 2 from [112] using tech-
niques from [182], who proposed a time-domain algorithm to identify mixed causal,
anti-causal systems. We will base our method for mixed causal, anti-causal sys-
tems on FRF samples, however the same reasoning can be used to extend other
subspace methods based on e.g. discrete Fourier transforms (DFT’s) of input and
output data as discussed by [112].

Problems with identification of anti-causal (or unstable) systems do arise e.g.
in closed-loop identification of a stabilized unstable system, in discretized systems
with fractional delay [94], in estimating the inverse of non-minimum phase systems
(usually due to time delay) or direct estimation of a deconvolution filter. Further-
more, this problem arises in the frequency domain implementation of a method we
proposed to estimate the Causal Wiener filter [57].

The paper is organized as follows. Section D.2 describes the problem of fre-
quency domain subspace algorithm for mixed causal, anti-causal systems in more
detail. Section D.3 derives a solution of the problem based on FRF samples. Sec-
tion D.4 illustrates the method by simulation examples.

D.2 Problem description

Consider the following discrete time mixed causal, anti-causal state-space system

xc(k+1) = Ac xc(k) + Bc u(k) (causal) (D.1)

xac(k−1) = Aacxac(k) + Bacu(k) (anti-causal) (D.2)

y(k) = Cc xc(k) + Cacxac(k) + Du(k) (D.3)

with u(k) ∈ Rm, y(k) ∈ Rl, xc(k) ∈ Rnc and xac(k) ∈ Rnac and Ac, Bc, Cc, Aac,
Bac, Cac and D of appropriate dimensions. Equation (D.1) models the causal and
(D.2) the anti-causal dynamics. The order of the system is given by n = nc +
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nac. Furthermore, the eigenvalues of Ac and Aac are inside the unit-circle and we
assume that the state-space description is minimal, i.e. there are no unobservable or
uncontrollable modes. This class of systems is a special case of descriptor systems,
described in the so-called Kronecker canonical form [182]. The transfer function of
the system is given by

G(z) =
−1∑

i=−∞
CacAac(−i−1)Bacz−i

︸ ︷︷ ︸
anti−causal

+D +
∞∑

i=1

CcAc(i−1)Bcz−i

︸ ︷︷ ︸
causal

and clearly consists of a causal and an anti-causal part. The FRF of the system is
given by

G(ejω) = D + Cc(ejωInc
−Ac)−1Bc + Cac(e−jωInac

−Aac)−1Bac (D.4)

The problem is to estimate the matrices Ac, Bc, Cc (up to a similarity trans-
formation Tc), Aac, Bac, Cac (up to a similarity transformation Tac) and D using
M noise corrupted estimates of the frequency response

Gk = G(ejωk) + nk, k = 1, 2, · · · ,M (D.5)

at a given but arbitrary number of distinct frequencies ωk (cf. [113]).
Note, that if ωk = πk/M , k = 1, · · · ,M (uniformly spaced frequencies) the

impulse response coefficients gi of G(z) =
∑∞

i=−∞ giz
−i can be calculated by the

two-sided inverse discrete Fourier transform

gi =
1

2M

M∑

k=1−M

Gkej2πik/2M , i = 1−M, · · · ,M

with G−k = G∗
k, (k = 1, · · · ,M − 1). Then, D can be set to D = g0. Ac

T , Bc
T and

Cc
T can be calculated from gi (i = 1, · · · ,M) by well known realization algorithms

(e.g. [89]). Dually Aac
T , Bac

T and Cac
T can be calculated from g−i (i = 1, · · · ,M)

by these same realization algorithms. This is basically an extension of Algorithm
1 of [113] for mixed causal, anti-causal systems. The following Section derives an
alternative algorithm, which can also be used for non-uniformly spaced frequencies,
which is basically an extension of Algorithm 2 of [113].

D.3 Derivation of the algorithm

First consider the DFT of (D.1)–(D.3), where we shifted equation (D.2) i − 1
samples forward in time

ejωXc(ω) = AcXc(ω) + BcU(ω) (D.6)

e−jωXac,i(ω) = AacXac,i(ω) + Bacej(i−1)ωU(ω) (D.7)

Y (ω) = CcXc(ω) + Cace−j(i−1)ωXac,i(ω) + DU(ω) (D.8)

where Xc(ω), Xac,i(ω), U(ω) and Y (ω) denoted the DFT of xc(k), xac(k + i− 1),
u(k) and y(k) respectively and let i > n.
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As in [113], let Xc
i (ω) the resulting state transform when U(ω) = er, with er

the unit-vector with 1 on the rth position, Xac,i
r (ω) is defined similarly. By defining

the compound state matrix

Xc
C(ω) = [Xc

1(ω) Xc
2(ω) · · · Xc

m(ω)]

and Xac,i
C similarly, the transfer function can be implicitly described as

G(ejω) = CcXc
C(ω) + Cace−j(i−1)ωXac,i

C (ω) + D (D.9)

with

ejωXc
C(ω) = AcXc

C(ω) + Bc (D.10)

e−jωXac,i
C (ω) = AacXac,i

C (ω) + Bacej(i−1)ω (D.11)

By iterative substituting the state-equations we obtain the relation




G(ejω)

ejωG(ejω)

...

ej(i−2)ωG(ejω)

ej(i−1)ωG(ejω)




=Oi

[
Xc

C(ω)

Xac,i
C (ω)

]
+Γi




Im

ejωIm

...

ej(i−2)ωIm

ej(i−1)ωIm




(D.12)

with

Oi =




Cc CacAac(i−1)

CcAc CacAac(i−2)

...
...

CcAc(i−2) CacAac

CcAc(i−1) Cac




(D.13)

=
[
Oc

i Oac
i

]
(D.14)

and the following Toeplitz matrix filled with impulse response coefficients

Γi =




D CacBac · · · CacAac(i−2)Bac

CcBc D
.. .

...

...
. . .

. . . CacBac

CcAc(i−2)Bc · · · CcBc D




By repeating (D.12) for all ωk (k = 1, · · · ,M) and using the frequency response
estimates Gk, the range space of Oi (and thus also the order n of the system) can
be determined by a QR factorization and an SVD as explained by [113]. If the
covariance function E[nknH

s ] = Rkδks of the noise nk is known, a weighting can be
performed to compensate for nk.
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Let Un be such that its columns span the range space of Oi. Then, we look for
an invertible n× n transformation matrix P such that

UnP =
[
Oc

i Oac
i

]
[

Tc 0

0 Tac

]
(D.15)

This problem to separate Un in a causal part fully determined by the pair (Ac, Cc)
and an anti-causal part fully determined by the pair (Aac, Cac) is exactly the prob-
lem which also appears in mixed causal, anti-causal subspace identification using
time-domain data, and is solved e.g. by [182].

The matrix P and nc, nac are calculated according to [182]. Then from the first
l rows in U ′

n = UnP , Cc
T and Cac

T can be picked up:

Cc
T = U ′

n(1 : l, 1 : nc), (D.16)

Cac
T = U ′

n(1 : l, nc + 1 : nc + nac) (D.17)

and Ac
T , Aac

T can be calculated by solving

U ′
n(1 : (i− 1)l, 1 : nc)A

c
T = U ′

n(l + 1 : il, 1 : nc) (D.18)

and

U ′
n(1 : (i− 1)l, nc + 1 : nc + nac)A

ac
T = U ′

n(l + 1 : il, nc + 1 : nc + nac) (D.19)

If Ac
T , Cc

T , Aac
T , Cac

T are calculated, Bc
T , Bac

T and D can be calculated by solving
a least squares problem using the samples (D.5), because Bc

T , Bac
T and D appear

linearly in G(ejω), cf. (D.4). Again a weighting using the noise covariance matrices
Rk can be used to compensate for nk [113].

Let us summarize the method in the following Algorithm 2 (Causal/Anti-
causal).

Algorithm 2 (C/AC):

1. Given: Samples Gk of the frequency response, and the covariance Rk at
frequency ωk for k = 1, · · · ,M .

2. Calculate the estimate Un of the extended observability matrix Oi as in Al-
gorithm 2 in [113].

3. Calculate the matrix P , which separates the causal and anti-causal part in
Un, and the orders of the causal and anti-causal part nc and nac respectively
as in Section 3.3 and 3.5 in [182].

4. Calculate U ′
n = UnP and select Cc

T and Cac
T according to (D.16) and (D.17)

respectively. Further solve Ac
T and Aac

T from (D.18) and (D.19) respectively.

5. Solve Bc
T , Bac

T and D from:

(Bc
T , Bac

T , D) = arg min
M∑

k=1

||R−1/2
k

(
Gk −D − Cc

T (ejωkInc
−Ac

T )−1Bc
T +

−Cac
T (e−jωkInac

−Aac
T )−1Bac

T

)
||2F
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We remark, that solving the least squares problem for Bc
T , Bac

T and D might be
ill-conditioned, especially if the system has poles close to the unit circle [113].
Regularization with a small ε > 0 parameter can improve the conditioning of the
least squares problem, at the expense of a small bias, see e.g. [70].

D.4 Simulation examples

We will consider two simulation examples: the identification of an academic system
and of an acoustic system, both with a stable and an unstable resonance modes.

D.4.1 Academic example

The discrete time academic system has a stable mode at 100Hz and an unstable
mode at 300Hz, the sampling rate is Fs = 1000Hz, and its transfer function is given
by

G(z) = (z−0.9e−j2π0.15)(z−0.9e+j2π0.15)
(z−0.95e−j2π0.1)(z−0.95e+j2π0.1) ·

(z−0.5e−j2π0.4)(z−0.5e+j2π0.4)
(z−1.1e−j2π0.3)(z−1.1e+j2π0.3)

The system was excited with a Schroeder multi sine, with frequencies ranging from
.5Hz to 500Hz in steps of ∆F = .5Hz. The number of samples in one block
to estimate the frequency response was chosen to be 2000 (= Fs/∆F ) such that
leakage due to Fourier transforming a finite block of samples is prevented [138].
The measured output was corrupted with unit variance Gaussian white noise v(k)
filtered by H(z)

y(k) = G(z)u(k) + H(z)v(k)

with H(z) given by

H(z) = 0.3z2

(z−0.95e−j2π0.1)(z−0.95e+j2π0.1) · z2

(z−0.91e−j2π0.3)(z−0.91e+j2π0.3)

The output data was generated by splitting G in a stable/causal part and an
unstable/anti-causal part. The latter was simulated by filtering anti-causally, to
prevent the output from exploding.

Based on 100 blocks, three methods were used to calculate the state-space model
of G:

PO-MOESP: Time-domain PO-MOESP [182];

A2: Algorithm 2 (C/AC) without knowledge of Rk;

A2wi: Algorithm 2(C/AC) with estimated Rk.

The i parameter of (D.12) was chosen to be i = 10. To make a fair comparison, for
PO-MOESP the 100 blocks each of 2000 samples were used to average the output to
reduce. In A2 and A2wi, the 100 blocks we used to average the estimated frequency
responses, and in A2wi also to calculated the variance Rk (k = 1, · · · , 2000).

Each experiment of 100 blocks was repeated 1000 times. Figure D.4.1 shows
the real frequency response of G, the average of the frequency response error made
by PO-MOESP, A2 and A2wi. From this Figure, we clearly see that the stable as
well as the unstable mode are accurately modeled by all three methods. Further,
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Figure D.1: Magnitude of G, and the frequency response estimation errors obtained
by using 100 blocks of 2000 samples, which were averaged over 1000 experiments.

Table D.1: Frequency and magnitude of unstable poles.

Frequency Magnitude Frequency Magnitude

0 1.64 ± 171 1.31

0 3.65 ± 278 1.41

0 8.21 ± 388 1.46

± 32.1 1.01 500 1.59

± 33.5 1.08 500 2.44

± 76.0 1.04 500 12.6

± 91.7 1.00

we infer that by taking the covariance information Rk of the noise into account, the
model is more accurately estimated, as was also concluded in [113] for the causal
method. Finally, we infer that on the average using the causal/anti-causal fre-
quency domain with covariance information, a more accurate model was estimated
then by using the causal/anti-causal time domain PO-MOESP method.

D.4.2 Acoustic system

The acoustic system to be identified is a transfer function in an acoustical duct,
which contains unstable modes due to the inversion of delays between actuators and
sensors which are not collocated, for more details we refer to [57]. The sampling
rate is again 1000Hz and the frequency response of the real system G and the noise
coloring H is shown in Figure D.2. The unstable poles of the system are given in
Table D.1.

The excitation signal was chosen the same as in the previous example, a
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Figure D.2: Magnitude of the real system G and the noise model H.

Schroeder multi sine with frequencies ranging from 0.5Hz to 500Hz with steps
of 0.5Hz. Each of the 100 blocks consists of 2000 samples. The results of the three
methods, PO-MOESP, A2 and A2wi, were averaged over 200 experiments and the
i parameter of (D.12) was chosen to be i = 100. We note, that the least squares
problem to solve Bc

T , Bac
T and D in A2 and A2wi was ill conditioned, due to poles

close to the unit circle.

Figure D.3 shows the average frequency response estimation error when the
order of the state-space model was chosen to be 44, which is the order of the
real system G. We observe, that again A2wi gives the smallest estimation error,
but the difference with A2 is not that large as in the previous academic example.
The causal, anti-causal PO-MOESP method gives less accurate models, which is
currently under study. Finally, Figure D.4 gives the average estimation error,
which is defined as [113]:

||Ĝ−G||2 =

√√√√ 1

M

M∑

k=1

|Ĝ(ejωk)−G(ejωk)|2

for different model orders. From the Figure, we infer that for orders above 32
A2wi yields the best result, closely followed by A2. It is remarkable that for orders
between 20 and 30, A2wi yields significantly less accurate results, whereas A2 gives
reasonable good results for these orders.

Though, some questions remain on the precise interpretation of the simulation
results, the simulation experiments show that the extension of frequency domain
subspace identification methods for mixed causal, anti-causal systems was success-
ful.
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Figure D.3: Magnitude of the frequency response estimation errors obtained by
the 44th order models identified by using 100 blocks of 2000 samples, which were
averaged over 200 experiments.
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Figure D.4: Estimation error obtained by using 100 blocks of 2000 samples, aver-
aged over 200 experiments.
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D.5 Conclusions

It has been shown how subspace identification methods based on frequency domain
data, can be adjusted to estimate a state-space model which models the causal and
anti-causal part of the system separately. The crucial step in extending the fre-
quency domain methods is to split up the extended observability matrix in a part
due to causal modes and a part due to anti-causal modes. The two simulation ex-
periments demonstrated that with the derived mixed causal, anti-causal subspace
identification algorithm using FRF samples the causal and anti-causal modes of
the systems could be accurately identified. We also observed, that including noise
weighting to compensate for noise on the FRF samples, the obtained model er-
ror was better than using time-domain PO-MOESP for mixed causal, anti-causal
systems.



Appendix E

Robust Decision Feedback

Equalizer design via the

solution of a regularized

least squares problem

Abstract

This paper1 presents a method to estimate a Decision Feedback Equalizer (DFE)
directly from training data, which is robust w.r.t. time-variations in the com-
munication channel. It is based on the indirect method proposed in [165], where
the time variations in the channel are modeled as a probabilistic uncertainty.
The robust DFE optimizes the performance by minimizing the mean squared
error averaged over the distribution of the uncertainty in the channel. We show,
that the robust DFE design problem can be solved by a regularized least squares
problem. The main advantage of this direct method over [165] is, that no longer a
spectral factorization in addition to a least squares problem is necessary. Another
advantage is, that a model of the (average) channel and the noise color are not
necessary anymore.

Keywords: robust filtering, estimation, signal processing, robust control, adap-
tive control.

This paper has been published before in [56].

1This research has been conducted in the framework of the Knowledge Center ‘Sound and
Vibration UT-TNO’, programme ‘Robust Active Control’, a joint initiative of TNO, Delft, The
Netherlands and the University of Twente, Enschede, The Netherlands.
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E.1 Introduction

In a lot of applications, digital signals are transmitted over noisy and time disper-
sive channels, which cause Inter Symbol Interference (ISI). For example, in digital
mobile radio like GSM, in modem connections and digital magnetic recording sys-
tems. The distorted digital signal should be recovered. If the channel is constant
in time, this can be done in an optimal way by the Viterby algorithm [52], how-
ever this algorithm is computationally complex. A suboptimal method, which
approximates the performance of the Viterby algorithm with much lower compu-
tational complexity, is provided by the Decision Feedback Equalizer (DFE), see
e.g. [119, 162]. A DFE is a nonlinear filter, which consists of two linear filters and
a nonlinear decision circuit. The linear filters give an estimate of the transmit-
ted digital symbol by feed forward of the received samples and feedback of past
decisioned data. The decisioned data is the output of the DFE and obtained by
rounding the estimate to the closest symbol value. In most applications the channel
dynamics are not constant in time. Therefore, the linear filters should be adjusted
in time. This is partly solved by splitting up the data to be transmitted in a series
of bursts which contain training bits. The training bits can be used to estimate the
channel or the DFE filters directly. The remaining time variation in a burst can
be compensated by adaptive design methods (e.g. [98]), which are especially used
for fast time variations, or by robust design methods for slowly varying channels.
In [100,165] design equations for a DFE which is robust for variations in the chan-
nel dynamics are given, and applied to the design of a DFE which is robust for
variations in mobile radio channels due to variations in the multi path propagation
of the radio waves. The design of the robust DFE was based on a robust open loop
filtering method, which uses probabilistic descriptions of model errors (related to
the stochastic embedding method [72]), and is referred to as the Cautious Wiener
(CW) approach [129, 164]. The advantage of this method is, that the filters are
optimized by taking the likelihood of the variations into account, rather than opti-
mizing for the worst case variation which might seldom happen. However, besides
the knowledge of the second order statistics of the uncertainty, this indirect method
requires a model of the average channel and the noise color. Using this information
the robust DFE is calculated by solving two coupled polynomial (Diophantine)
equations and a spectral factorization.

Our contribution is a method to estimate a robust DFE directly from data, us-
ing second order statistics of the uncertainty in the channel too. The uncertainty
in the channel is modeled in the same way as in the CW method, such that the av-
eraged performance is optimized. The robust DFE is solved by a regularized least
squares problem, which is determined by the data and the second order statistics
of the uncertainty. So, we do not need a model of the channel and the noise color,
neither solving the coupled Diophantine equations and the spectral factorization.
We assume, that the training data used to design the DFE is coming from (approx-
imately) the average channel. Simulation experiments with a fading mobile radio
channel, showed that the obtained performance of this directly estimated robust
DFE was comparable to the indirectly estimated robust DFE of [165].

The paper is organized as follows. Section E.2 describes the modeling of the
uncertainty in the channel and derives the robust performance criterion for the
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robust DFE. Section E.3 describes the regularized least squares solution to the
robust performance criterion. Section E.4 compares the robust DFE for a mobile
radio application by simulation experiments and makes a comparison with the CW
robust DFE. Section E.5 concludes the paper.

E.2 Problem setup

E.2.1 Remarks on notation

In this paper we assume, without loss of generality, the signals to be
one-dimensional. A polynomial P (q−1) in the unit shift backward op-
erator q−1 of order np is denoted by P (q−1) = p0 + p1q

−1 + · · · +
pnp

q−np , its complex conjugate is denoted by P∗(q) = p∗0 + p∗1q + · · · +
p∗np

qnp . Transfer functions are denoted in calligraphic, e.g. P(q−1) =

P (q−1)/Q(q−1) with complex conjugate denoted as P∗(q) = P∗(q)/Q∗(q). Of-
ten, we omit the arguments q−1 and q. Further, we define the vector

ϕnp
(q−1) :=

[
1 q−1 · · · q−np

]T
.

E.2.2 Modeling of time variations in the channel

Figure E.1 illustrates the principle of decision feedback equalization. A sequence
of digital symbols d(k) (possibly complex valued) is transmitted through a time
dispersive channel C := C/A and corrupted by noise, which color is determined by
M := M/N . The received signal y(k) can be expressed as

y(k) = C(q−1)d(k) +M(q−1)v(k) (E.1)

with v(k) zero mean white noise with variance E[|v(k)|2] = σ2
v and uncorrelated

with d(k − i) for all i. We assume, that the transmitted symbols d(k) are zero
mean and white, with variance E[|d(k)|2] = σ2

d. We want to reconstruct d(k) using
the received signal y(k). This is done by a DFE, which is tuned during a training
period in which a sequence of Ntr a priori known symbols dtr(k) is transmitted

+

+ +

−

PSfrag replacements

d(k)

v(k)

y(k) d̂(k−n|k) d(k−n|k)
C

M

W

q−1K

Decision Feedback Equalizer

non-linear decision
element

Figure E.1: The DFE, W, K with the non-linear decision element, provide the
estimate d(k − n|k) of the transmitted message d(k) corrupted by the channel C
and noise Mv(k).
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and ytr(k) is received. The training data is indicated with {dtr(k), ytr(k)}Ntr

k=1.
The coefficients of the transfer function C are (slowly) time varying due to e.g.
environmental changes. Hence, the DFE which is designed to be optimal for the
training period, might be suboptimal outside this time period. Because the time
variation of the channel outside the training period is unknown, we cannot design
a DFE which is optimal during the normal data transmission. However, we can
model the time variation as uncertainty on the channel during the training and
design a DFE which is robust for this uncertainty. This means, that the average
performance of the robust DFE should be better than the DFE which does not
account for the uncertainty due to time variations. Therefore, the time variation in
the channel during data transmission is modeled in a probabilistic manner as in the
CW approach [129, 164], such that the likelihood of the variations in the channel
is also taken into account. During the training period and during the normal data
transmission the transfer function of the channel is given by

C(q−1) := C0(q−1) during training (E.2)

C(q−1) := C0(q−1) + ∆C(q−1) during data transmission (E.3)

with ∆C an uncertain transfer function ∆C is modeled as a complex stochastic
variable in the frequency domain, with zero mean and known covariance function
Φ∆C(ω):

E[∆C(e−jω)] := 0, −π ≤ ω < π (E.4)

E[∆C(e−jω)∆C∗(ejω)] := Φ∆C(ω), −π ≤ ω < π (E.5)

The modeling of the uncertainty ∆C is similar to the modeling of uncertainty in
the CW approach. In the CW approach ∆C is of the form [164]

∆C(q−1) :=
C1(q

−1)∆C(q−1)

A1(q−1)

with C1 and A1 known polynomials and ∆C(q−1) = ∆c0+∆c1q
−1+· · ·+∆cnc

q−nc

a polynomial which coefficients are stochastic variables with zero mean and known
covariances E[∆ci∆c∗j ] collected in the matrix R∆C . Then the covariance function
Φ∆C(ω) is given by

Φ∆C(ω) =
C1(e

−jω)C1∗(ejω)ϕT
nc

(e−jω)R∆Cϕnc
(ejω)

A1(e−jω)A1∗(ejω)

In the method proposed in this paper, we only need the inverse Fourier transform
of Φ∆C(ω), which can be determined e.g. by using the polynomials used in the CW
method, i.e. A1, C1 and ϕT

nc
(q−1)R∆Cϕnc

(q).

E.2.3 Formulation of the robust DFE criterion

The DFE d(k − n) by d(k − n|k) (with n a user chosen smoothing lag) using the
received samples y(i) (i ≤ k). The estimate d(k−n|k) is given by the digital symbol

closest to the estimate d̂(k − n|k) made by

d̂(k − n|k) =W(q−1)y(k) +K(q−1)d(k − n− 1|k − 1) (E.6)
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with W = W/R and K = K/P the feed forward and feedback filters that need
to be designed respectively. Due to the nonlinear decision element in the DFE,
the design of an optimal DFE becomes very complicated. Therefore, errors in the
decisioned data d(k − n|k) are modeled as zero mean white noise κ(k − n) with
variance σ2

κ = ησ2
d, as proposed in [165]

d(k − n|k) = d(k − n) + κ(k − n) (E.7)

with κ(k) independent of d(k− i) and v(k− i) for all i. Modeling the decision
errors in this way, the feedback of the decisioned data can be interpreted as feed
forward of the symbol d(k−n) corrupted by noise κ(k−n), see Figure E.2. Now, by
removing the nonlinear decision element, the equalization problem can be solved
by minimizing the Mean Squared Error (MSE) E[|d(k−n)− d̂(k−n|k)|2]. However,
we want to design a DFE which is robust for the uncertainty ∆C, hence the DFE
will be designed by minimizing the MSE averaged over the distribution of ∆C. So
we want to minimize the criterion used in the CW approach

J := E
[
E
[
|d(k−n)− d̂(k−n|k)|2

]]
(E.8)

with E[.] and E[.] denote expectation over ∆C and over the noise quantities d, v
and κ respectively.

E.3 Estimation of the robust DFE

E.3.1 Minimization of the criterion

Making use of the definition of d̂(k−n|k) by respectively (E.6) and (E.7), the
definition of y(k) by (E.1) and the channel C by (E.3), we can formulate the criterion
(E.8) via Parseval’s identity [79] in the frequency domain

J =
1

2π

π∫

−π

E
(
|e−jωn −W(C0 + ∆C) +Ke−jω(n+1)|2σ2

d + |W|2|M|2σ2
v + |K|2σ2

κ

)
dω

+

−+

+

+

+

+

−

PSfrag replacements
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Figure E.2: Design scheme for the DFE assuming the errors in the decisioned data
to be the white noise process κ(k).
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Because ∆C is zero mean and its covariance is given by (E.5), this criterion J can
be rewritten as

J =
1

2π

∫ π

−π

|e−jωn −WC0 +Ke−jω(n+1)|2σ2
d + |W|2|M|2σ2

v + |W|2Φ∆Cσ2
d+

+ |K|2σ2
κ dω (E.9)

The first two terms in the integrand determine the MSE when there is no uncer-
tainty in the channel (Φ∆C(ω) = 0) and the decisioned data d(k−n|k) is assumed
to be error free (σκ = 0). From the third term, we infer that by minimizing the
criterion the gain of the feed forward filter W is decreased in the frequency region
where the uncertainty in the channel is large. Note, that the same effect would have
been obtained by measurement noise (uncorrelated with d and κ) with spectrum
|M|2σ2

v +Φ∆Cσ2
d in the case the channel is the nominal channel C0. From the fourth

term, we infer that by minimizing the criterion the gain of K is decreased over all
frequencies, because we assumed κ(k) to be white. This was also concluded in [165]
where a minimization of (E.9) resulted in a spectral factorization and two coupled
Diophantine equations for the filter coefficients ofW and K, which require a model
of the average channel C0, the second order statistics Φ∆C of the uncertainty in the
channel and the noise colorM. In the following, we will indicate how to minimize
(E.9) in the time domain using the training data and the second order statistics
Φ∆C of the uncertainty of the channel. Let us introduce the signal df (k), with
power spectrum Φdf

(ω) defined as

Φdf
(ω) := Φ∆C(ω)σ2

d (E.10)

Further, let us distinguish the individual contributions to J :

J0 := 1
2π

∫ π

−π
|e−jωn−WC0 +Ke−jω(n+1)|2σ2

d dω

Jv := 1
2π

∫ π

−π
|W|2|M|2σ2

v dω

Jdf
:= 1

2π

∫ π

−π
|W|2Φdf

(ω) dω

Jκ := 1
2π

∫ π

−π
|W|2σ2

κ dω

so J = J0 + Jv + Jdf
+ Jκ. By Parseval’s rule we have:

J0 = E
[(

d(k − n)−WC0d(k) +Kd(k − n− 1)
)2]

Jv = E
[(
WMv(k)

)2]

Jdf
= E

[(
Wdf (k)

)2]

Jκ = E
[(
Kκ(k)

)2]

Because E[d(k)v∗(k−i)] = 0 for all i, we can write

J0 + Jv = E
[(

d(k − n)−W
(
C0d(k) +Mv(k)

)
+Kd(k − n− 1)

)2]
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Hence, (E.9) can be written as

J =E
[∣∣∣d(k−n)−W

(
C0d(k) +Mv(k)

)
+Kd(k−n−1)

∣∣∣
2]

+ E
[∣∣Wdf (k)

∣∣2
]
+

+E
[∣∣Kκ(k)

∣∣2
]

Using the training data dtr(k), ytr(k) = C0dtr(k) +Mv(k) (k = 1, ..., Ntr) and
replacing the ensemble average with the time average over the available training
data in the first term of J , the criterion can be approximated with

Ĵ =
1

Ntr−m

Ntr∑

k=m+1

∣∣∣dtr(k−n)− Ŵytr(k) + K̂dtr(k−n−1)
∣∣∣
2

+ E
[∣∣Ŵdf (k)

∣∣2
]

+ E
[∣∣K̂κ(k)

∣∣2
]

(E.11)

with m determined by the smoothing lag n and the degrees of the numerator and
denominator polynomials of Ŵ and K̂. We can solve for the IIR filters Ŵ = Ŵ/R̂
and K̂ = K̂/P̂ by minimizing (E.11) if σκ 6= 0. Note, that the criterion is not convex
in the parameters, so local minima may exist. The problem of non-convexity can
be solved by using subspace identification methods [181], which give unique state-
space models of Ŵ and K̂ (up to a similarity transformation) which are close to
the optimal transfer functions, but do not explicitly minimize the MSE. In the case
σκ = 0, the input data is not informative enough to estimate the polynomials Ŵ ,
R̂, K̂ and P̂ , due to feedback of dtr(k−n−1) [104]. In this case, we have to restrict
to estimate FIR filters, so Ŵ = Ŵ and K̂ = K̂.

E.3.2 Estimation of a robust DFE containing FIR filters

We will work out the estimation of the time domain robust DFE in the case that
Ŵ and K̂ are FIR filters. Let us define

ŵ :=
[

ŵ0 · · · ŵnw

]T
, k̂ :=

[
k̂0 · · · k̂nk

]T

ynw
(k) :=

[
ytr(k) · · · ytr(k − nw)

]T

df nw
(k) :=

[
df (k) · · · df (k − nw)

]T

dnk
(k) :=

[
dtr(k) · · · dtr(k − nk)

]T

κnk
(k) :=

[
κ(k) · · · κ(k − nk)

]T

So, the criterion (E.11) can be written as

Ĵ = 1
Ntr−m

Ntr∑
k=m+1

∣∣∣dtr(k−n)− ŵT ynw
(k) + k̂T dnk

(k−n−1)
∣∣∣
2

+ E[|ŵT df nw
(k)|2]+

+E[|k̂T κnk
(k)|2]

with m := max(nw, n + nk + 1). Further, define

Y :=
[

ynw
(m + 1) · · · ynw

(Ntr)
]T

D :=
[

dnk
(m− n) · · · dnk

(Ntr − n− 1)
]T

d :=
[

dtr(m− n + 1) · · · dtr(Ntr − n)
]T
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By constraining the gradient of Ĵ to be zero, we obtain the following set of normal
equations for the filter coefficients

(
1

Ntr−m

[
Y T

−DT

][
Y T

−DT

]H

+

[
E[df nw

(k)df
H
nw

(k)] 0

0 E[κnk (k)κH
nk

(k)]

])[ ŵ∗

k̂∗

]
=

= 1
Ntr−m

[
Y T

−DT

]
d∗

(E.12)

with (.)H the Hermitian transpose operator and E[κnk
(k)κH

nk
(k)] = σ2

κInk+1.

E[df nw
(k)df

H
nw

(k)] can be calculated using (E.10). Note that

E[df nw
(k)df

H
nw

(k)] =




Rdf
(0) · · · Rdf

(nw)

...
. . .

...

R∗
df

(nw) · · · Rdf
(0)




with Rdf
(i) = E[df (k)d∗

f (k− i)] which can be calculated using the inverse Fourier

transform of the spectrum of df (k) (E.10) Rdf
(i) = 1

2π

∫ π

−π
Φdf

(ω)ejωidω. Now,
(E.12) can be solved for the filter coefficients of the robust DFE stored in ŵ and
k̂. Note, that Y and D are Toeplitz matrices, which structure might be exploited
to obtain a fast implementation to calculate ŵ and k̂. The block diagonal co-
variance matrix with diagonal entries E[df nw

(k)df
H
nw

(k)] and E[κnk
(k)κH

nk
(k)] in

(E.12), can be considered as a regularization of the nominal DFE least squares
problem [85]. In general Φ∆C(ω) is a function of frequency and not a scalar, i.e.
the uncertainty is frequency dependent. So, there exists i 6= 0 such that Rdf

(i) 6= 0

and the matrix E[df nw
(k)df

H
nw

(k)], used for the regularization, is not just diagonal.
Usually, for simplicity reasons, least squares problems are regularized with a scalar
regularization parameter [70], to obtain a robust solution. Recently, [23] proposed
a method to determine the optimal value of the scalar regularization parameter,
given a bound on the uncertainty on the data matrix

[
Y −D

]
. However, regu-

larization with a scalar only, does not take into account the frequency dependency
of the uncertainty. The method described in this paper, can be seen as a gen-
eralization that explicitly takes the frequency dependency of the uncertainty into
account.

E.3.3 Adaptive estimation of a robust DFE

For the FIR filter case, Ŵ = Ŵ and K̂ = K̂, the optimization problem (E.11)
can also be minimized (approximately) in an adaptive way using e.g. the Least
Mean Squares (LMS) method. The filter coefficients of the time varying filters
Ŵ (k, q−1) and K̂(k, q−1) are contained in the vectors ŵ(k) and k̂(k) respectively.
The criterion Ĵ is replaced by

Ĵ(k) =
∣∣∣dtr(k−n)− ŵT (k)ynw(k) + k̂T (k)dnk(k−n− 1)

∣∣∣
2

+E[|ŵT (k)df nw(k)|2] + E[|k̂T (k)κnk(k)|2]
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The filter coefficients are updated by

ŵ(k + 1) = ŵ(k)− µw

(
∂Ĵ(k)
∂ŵ(k)

)T

k̂(k + 1) = k̂(k)− µk

(
∂Ĵ(k)

∂k̂(k)

)T

with µw and µk are user chosen step sizes and
(

∂Ĵ(k)
∂ŵ(k)

)T

= 2
(
ynw(k)d∗

tr(k−n)− ynw(k)yH
nw(k)ŵ∗(k)+

+ynw(k)dH
nk(k−n−1)k̂∗(k) + E[df nw(k)df

H
nw(k)]ŵ∗(k)

)

(
∂Ĵ(k)

∂k̂(k)

)T

= 2
(
−dnk(k−n−1)d∗

tr(k−n) + dnk(k−n−1)yH
nw(k)ŵ∗(k)+

−dnk(k−n−1)dH
nk(k−n−1)k̂∗(k)− E[κnk(k)κH

nk(k)]k̂∗(k)
)

This yields a robust adaptive method to update the DFE filters.

E.4 Application to mobile radio channel equaliza-
tion

E.4.1 Mobile radio channel

In mobile radio channels, like in GSM, the transmitted (base band) signal d(k) is
distorted due to multi path propagation of the radio waves and noise. Due to the
mobility of the mobile receiver and changes in the environment, the multi path
propagation is not constant in time. To compensate for the time variation in a
burst, a robust DFE is estimated as described in Section E.3. We compare this
robust DFE also with the robust DFE obtained by using the CW approach taken
in [100, 165]. In the experiment, the transmitted data is a binary PAM signal, i.e.
d(k) ∈ {−1,+1}. Each burst consists of 100 data symbols and 30 training symbols,
the latter are located in the middle of the burst. The channel is Rayleigh fading
with three independent real valued FIR coefficients [98] C(k, q−1) = c0(k) +
c1(k)q−1 + c2(k)q−2 with E[ci(k)] = 0 (i = 0, 1, 2) and

E[c(k+l)cT (k)]=




1.00 0.00 0.00

0.00 0.66 0.00

0.00 0.00 0.33


 J0(2πfc

v

c0
l) (E.13)

with c(k) = [c0(k) c1(k) c2(k)]T , J0(.) the zero order Bessel function of the first
kind, the carrier frequency fc = 1800MHz. The velocity of the mobile receiver and
the speed of light are denoted by v and c0 respectively. Figure E.3 illustrates the
time variation of the channel. It shows the variation of the coefficients over 10
bursts for a mobile receiver moving at 50km/h and at 300km/h, we see there is
much more variation in the channel at high velocities. In the experiment, the noise
is white (M = 1) with standard deviation σv. The signal to noise ratio is defined
as

SNR = 20 log
σd

σv
E||C(k, q−1)||2 (dB)
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with σd = 1 and E||C(k, q−1)||2 the average 2-norm of the channel. Further, the
time between two subsequent symbols is equal to the sample time Ts = 3, 7µs.

E.4.2 Modeling of uncertainty

In the CW approach [165], the estimated channel Ĉ0 is used as the average channel
C0. The time variation of the channel and the uncertainty in the identification are
modeled by the uncertain polynomial ∆C(q−1), with covariance matrix [99]

R∆C = Rvar + Rid

Rid follows from the identification of C0 and Rvar can be calculated using the
distribution of the channel coefficients. To determine Rvar, we will follow [99].
The uncertainty in the channel during one burst is determined by Rburst

Rburst =
1

Tb

∫ Tb

t=0

(
c(t)− c(

Tb

2
)
)(

c(t)− c(
Tb

2
)
)T

dt (E.14)

with Tb = 130 · Ts = 0, 48ms the duration of the burst and (with some abuse
of notation) c(t) the vector containing the coefficients of the channel at time t
(relative to the beginning of the burst). Because c(t) is unknown, Rburst cannot
be calculated explicitly. However, we can average Rburst over all bursts using the
distribution of the channel (E.13)

Rvar = 2Rc

(
1− 2

Tb

∫ Tb/2

0

J0(2πfc
v

c0
τ) dτ

)
(E.15)

with Rc = E[c(k)cT (k)], which can be estimated by averaging over a number
of bursts. Then, the robust DFE can be calculated by the CW approach using
the estimated channel Ĉ0 and the covariance matrix R∆C . When we directly
estimate a robust DFE from the training data as described in Section E.3 we
should use another covariance matrix R∆C for two reasons. First, we don’t have
to compensate for uncertainty in the identification of the channel. Second, the
nominal DFE estimated from the training data is optimal for the training period, so
it compensates already for variations in the training period. Because the variation
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Figure E.3: Fading channel taps (first: solid, second: dashed, third: dash-dotted)
during the first 10 bursts for a mobile receiver moving with 50km/h (upper) and
300 km/h (lower).
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of the channel coefficients is smooth, we may assume, that the nominal DFE is
approximately optimal just outside the training period. Therefore, we can use a
smaller covariance matrix, R∆C , given by R∆C = αRvar, (0 < α < 1) with Rvar

given by (E.15). In the simulation example we used α = 1
Ntr−m = 0.04.

E.4.3 Simulation results

A series of simulations are done at various velocities of the mobile receiver (ranging
from 50km/h to 300km/h) and different SNR’s (ranging from 10dB to 30dB). In
each simulation about 750 bursts were transmitted, the bursts were separated by
2 symbols, to account for the smoothing lag n = 2. We compared the average Bit
Error Rate (BER) obtained by directly estimated nominal and robust DFE’s and
indirectly determined nominal and robust DFE’s according to the CW approach.
For the indirect approach the nominal DFE consists of a 2nd order feed forward
filter and a 1st order feedback filter, which orders are optimal. The robust DFE
consists of IIR filters, the feed forward filter and feedback filter have numerator
polynomials of order 2 and 1 respectively, their denominator polynomials are equal
and of order 1. For the direct approach, the nominal and robust DFE’s consists
of FIR filters which has the same order as for the indirectly estimated nominal
DFE. Because of the FIR structure the robust DFE can be calculated as indi-
cated in Section E.3.2. The standard deviation of κ(k) was chosen σκ = 0, so we
assumed the past decisioned data to be correct. However, additional robustness
can be obtained by increasing σκ. Figure E.4 shows the average BER versus the
SNR at various speeds of the mobile receiver by using the indirect CW method
and the direct method. The performance of the indirectly estimated nominal and
robust DFE’s are indicated by regular solid and dashed curves respectively. The
performance of the directly estimated nominal and robust DFE’s are indicated by
circle marked solid and dashed curves respectively. We infer, that in the direct
and the indirect case the performance of the DFE can be improved by taking the
uncertainty due to time variations in the channel into account, especially at high
SNR’s and high velocities. The performance of the directly estimated robust DFE
approximates the performance of the indirectly estimated robust DFE (based on
CW), designed using two coupled Diophantine equations and a spectral factoriza-
tion. Further, note that the performance of the indirectly estimated nominal DFE
is getting worse at high SNR’s. This can be explained by the fact, that the nominal
DFE’s which are designed to be optimal at high SNR’s are more sensitive to per-
turbations like variations in the channel. The Viterby algorithm has also be used
to estimate the transmitted signal. However it’s performance was much worse than
the performance of the nominal and robust DFE’s, because the Viterby algorithm
is not optimal for time varying channels.

E.5 Conclusions

A method to estimate a robust Decision Feedback Equalizer (DFE) directly from
data using regularized least squares was derived. The DFE is robust with respect
to time variations in the channel, which are modeled as probabilistic uncertainty
on the channel like in the Cautious Wiener approach. The robust DFE is a solution
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Figure E.4: BER versus SNR curves at 50-300km/h, obtained with the indirect
nominal (solid) and robust (dashed) DFE and obtained with the direct nominal
(solid with circles) and robust (dashed with circles) DFE.

to a least squares problem which is regularized using second order statistics of the
uncertainty. This regularized least squares problem is obtained by minimizing the
mean squared error (MSE) averaged over the distribution of the uncertainty in the
channel. A simulation example with a fading mobile radio channel, showed that
performance of the directly estimated robust DFE is comparable to the indirectly
estimated robust DFE. The performance of the (directly and indirectly) nominal
DFE could be improvewd by the robust DFE, especially when the variation in
the channel and the signal to noise ratio are large. An advantage of the directly
estimated robust DFE is, that no spectral factorization is necessary, and no model
of the average channel and the noise color are necessary anymore. The structure in
the least squares problem might be used to obtain fast implementations to calculate
the DFE filters. Also adaptive estimation of a robust DFE was proposed, by
minimizing the averaged MSE by the LMS-algorithm. Further analysis of this
method and is left for further research.



Summary

Robust and fast schemes in broadband active noise

and vibration control

This thesis presents robust and fast active control algorithms for the suppression of
broadband noise and vibration disturbances. Noise disturbances, e.g., generated by
engines in airplanes and cars or by airflow, can be reduced by means of passive or
active methods. In passive methods, the undesired noise disturbances are isolated
or damped with passive isolation or damping material. Since the required thick-
ness of passive isolation material is determined by the largest wavelength of the
disturbing noise, for low frequencies often thick and heavy materials are needed,
which are undesired, e.g., in airplanes. The active methods are based on a different
principle, namely on the principle of interference with a counteracting wave. This
counteracting wave, generated by loudspeakers, is ideally exactly the opposite of
the disturbing wave.

Similarly, the active control approach can also be used to suppress vibration
disturbances in mechanical structures, e.g., to reduce the sound radiation of the
structure due to the vibrations. The vibrations are suppressed by generating coun-
teracting vibrations in the structure by means of, e.g., piezoceramic actuators or
voice coil shakers. From the perspective of the design of the control algorithm, the
active control of noise and vibration is very similar, and therefore we consider a
generic control problem that covers both of these applications, and refer to it as
the active noise and vibration control (ANVC) problem.

In ANVC the systems to be controlled are usually infinite dimensional systems,
which can be approximated by finite dimensional systems in a limited bandwidth
(typically 0-1kHz). However, since acoustical and mechanical systems often con-
tain many resonance frequencies, these finite dimensional approximations need to
be of high order. When the delay between the actuators and sensors can be arbi-
trarily reduced by collocation of actuator and sensor pairs, often simple (analogue)
lead-, lag-, and proportional-integral-derivative controllers are effective solutions.
However, in many situations the delay cannot be arbitrarily reduced and thus to
retain closed loop stability the bandwidth should be significantly reduced. In this
case model-based control methods can increase the bandwidth and improve the
performance without leading to instability. However, since models always contain
errors, the uncertainty in the models need to be accounted for in every model-based
controller design.

This thesis considers the robust controller design for feedforward and feedback
ANVC systems with stochastic broadband disturbances. The additional difficulty
in comparison with harmonic disturbances is first that the disturbing frequencies
are distributed over a particular bandwidth, which requires relatively complex con-
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trollers with prescribed amplitude and phase behavior in this band. The second
difficulty is, that the disturbance is stochastic and therefore the future values of
the disturbance are not known precisely, which limits the freedom to design the
controller.

Currently in ANVC applications the Filtered-X LMS adaptive algorithm is
mainly used to compute the control signal. This algorithm has some attractive
properties, such as its simplicity, its well understood convergence behavior and ro-
bustness properties. The latter are inherited from the H∞ optimality of the LMS
algorithm (c.f. [74]) and the passivity of the adaptive update rule if a particular
strictly positive real condition relating the model and the true system is satisfied
(c.f. [188]). Though the algorithm is well suited for applications with harmonic dis-
turbances, for broadband applications its convergence rate is slow and the compu-
tational complexity increases considerably, especially in multichannel applications.
This thesis proposes novel algorithms and offers insight to improve the convergence
properties and to reduce the computational complexity of the Filtered-X LMS al-
gorithm.

Chapter 2 lays the mathematical basis of the thesis and discusses the H2 optimal
feedforward and feedback control problems following a factorization approach, and
clarifies their tight relation by means of the Youla parameterization. The effect of
noise on the input signal (i.e., the reference signal in feedforward configurations) is
analyzed, as well as the effect of control effort weighting. Both will reduce the gain
of the optimal feedforward controller, or Youla parameter, in specific frequency
bands.

Chapter 3 discusses the nominal controller problem and therefore considers
first the accurate identification of models. To this end a comparison has been
made between the identification of a prediction error model with the output error
structure (PEM-OE) and the identification of a state-space model by a subspace
model identification method, more precisely the PO-MOESP method [181]. It
is shown that a fast implementation of the PO-MOESP algorithm outperforms
the PEM-OE method, in identifying a 20th order vibrating plate system with 4
inputs and 4 outputs. The second part of the chapter proposes a method for
the control-relevant estimation of the H2 optimal controller for feedforward and
feedback applications. The basic idea in control-relevant estimation of a controller
(or a factor determining the controller), is that in the controller design the control
cost function is explicitly minimized using measured data, rather than using a cost
function that is fully determined by (uncertain) models of the system. It is shown,
that uncertainty in the spectral factors of the reference signal and the disturbance
signal can be partly compensated for, leading to better estimates of the H2 optimal
controller.

Chapter 4 considers the robust controller design problem by taking the uncer-
tainty in the model explicitly into account by means of a probabilistic approach.
The probabilistic approach was initially proposed for feedforward control and fil-
tering problems by Sternad and Ahlén [164] in a polynomial model framework.
In this thesis this approach has been adopted for probabilistic controller design
and extended it to the state-space model framework, where the B and D or the
C and D state-space model matrices are distorted by stochastic uncertainty with
zero mean and known covariance. Additional frequency dependent weighting of
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the uncertainty can also be included in the uncertainty model description. Using
this uncertainty model a robust feedforward controller has been designed which
optimizes the H2 optimal performance averaged over the model uncertainty dis-
tribution. Similar to the control-relevant estimation of the nominal controller as
discussed in Chapter 3, it is shown that the control-relevant estimation can be
extended to estimate the robust feedforward controller. Furthermore, for the feed-
back application it has been shown, that using this robust feedforward controller
in combination with Internal Model Control feedback compensation, the stability
robustness of the closed loop has been improved.

Chapter 5 presents a theoretical spin-off of Chapter 2 with respect of the con-
vergence analysis of the Filtered-U LMS algorithm, which is the infinite impulse
response (IIR) equivalent of the Filtered-X LMS algorithm. The convergence anal-
ysis of adaptive algorithms which update the coefficients of an IIR filter is in lit-
erature well known to be difficult, since the cost function is usually a non-convex
function of the adaptive filter coefficients. Recently, Wang and Ren [187] have
derived conditions for the global convergence of the Filtered-U LMS algorithms,
under the restrictive assumption that perfect cancellation of all disturbances (up
to measurement noise) would be achievable. This assumption is often not satis-
fied in practice due to delays and non-minimum phase zeros in the system. This
chapter shows that this assumption can be omitted, by analysis of the structure
of the optimal controller and the remaining residual disturbance. Based on the
structure of the optimal solution of the feedforward controller a preconditioning of
the Filtered-U LMS algorithm has been proposed to increase its convergence rate.
The preconditioning is analogous to the preconditioning of the Filtered-X LMS
algorithm proposed by Elliott et al. [47].

Chapter 6 extends the probabilistic robust controller design of Chapter 4 to
adaptive algorithms. The robustness of the Filtered-X LMS algorithm and the pre-
conditioned Filtered-X LMS algorithm with respect to modeling errors is increased
by taking model uncertainty explicitly into account. The new robust adaptive up-
date algorithms are obtained by using LMS estimates of the gradient of the mean
squared error averaged over the model uncertainty distribution. The robustness
of the adaptive algorithm is effectively improved without losing too much perfor-
mance as would be the case when using a leaky version of the Filtered-X LMS
algorithm. However, the price paid is an increase of computational complexity
since the number of columns of the regressor is augmented.

The last contribution of this thesis is contained in Chapter 7, which analyzes
the feedforward active control problem in a Kalman-filter state-estimation context.
This context may be especially attractive for applications where the (precondi-
tioned) Filtered-X LMS does not provide a satisfactory convergence behavior. The
active control problem is reformulated into a state estimation problem containing
the adaptive filter coefficients and the state of the system. It has been shown that
the algorithm reduces to the modified Filtered-X RLS algorithm, see e.g., [51],
when the state of the system can be assumed to be perfectly known which is a sim-
plification in practice. A fast array implementation of the Kalman filter algorithm
has been derived to obtain an implementation which is more feasible in practical
applications.

Concluding, this thesis proposes a set of algorithmic tools which may serve



214 Summary

the practical active controller design to improve robustness, to reduce convergence
times and to lower computational complexity. The research leads also to new
research questions which may yield further improvements of algorithms for ANVC,
as outlined in Chapter 8.



Samenvatting

Robuuste en snelle ontwerpen in het breedbandig

actief regelen van stoorgeluid en trillingen

Dit proefschrift presenteert robuuste en snelle actieve regel algoritmes voor de on-
derdrukking van breedbandig stoorgeluid en storende trillingen. Stoorgeluid, bij-
voorbeeld gegenereerd door motoren in vliegtuigen of auto’s of door luchtstroming,
kan gereduceerd worden door passieve of actieve methodes. In passieve methodes
worden de ongewenste stoorgeluiden gëısoleerd of gedempt door passief isolatie-
of dempingsmateriaal. Omdat de benodigde dikte van het passieve isolatiemateri-
aal wordt bepaald door de grootste golflengte van het stoorgeluid, zijn voor lage
frequenties vaak dikke en zware materialen nodig, hetgeen niet gewenst is in, bij-
voorbeeld, vliegtuigen. De actieve methoden zijn gebaseerd op een ander principe,
namelijk het principe van interferentie met een tegenwerkende golf. Deze tegenwer-
kende golf, gegenereerd door luidsprekers, is in het ideale geval exact tegengesteld
aan de storende golf.

Op dezelfde manier kan de actieve regelbenadering gebruikt worden om sto-
rende trillingen in mechanische structuren te onderdrukken, bijvoorbeeld om de
geluidsafstraling van deze structuren te reduceren. De trillingen worden onder-
drukt door in de mechanische structuur tegengolven te genereren door middel van,
bijvoorbeeld, piezokeramische actuatoren of voice-coil schudders. Vanuit het per-
spectief van het ontwerp van het regelalgoritme is het actief regelen van stoorgeluid
en trillingen vrijwel aan elkaar gelijk, en daarom beschouwen we een generiek regel-
probleem welke beide toepassingen omvat, en verwijzen hiernaar als het probleem
van het actief regelen van stoorgeluid en trillingen (in engels: Active Noise and
Vibration Control, ANVC).

In ANVC zijn de systemen, die moeten worden geregeld, gewoonlijk oneindig-
dimensionale systemen, die alleen kunnen worden benaderd door eindig dimensio-
nale systemen in een beperkte bandbreedte (typisch 0-1kHz). Echter, omdat akous-
tische en mechanische systemen vaak veel resonantie-frequenties hebben, dienen
deze eindig dimensionale benaderingen van hoge orde te zijn. Indien de vertraging
tussen de actuatoren en de sensoren willekeurig verminderd kan worden door het
gelijk positioneren van actuator-sensor paren, kan er volstaan worden met eenvou-
dige (analoge) lead-, lag- en proportional-integral-derivate regelaars. In veel geval-
len kan de vertraging niet willekeurig worden verminderd en moet de bandbreedte
aanzienlijk worden gereduceerd om de stabiliteit van de gesloten lus te behouden.
In deze gevallen kunnen modelgebaseerde regelaars de bandbreedte vergroten en
de prestatie verhogen zonder dat dit leidt tot instabiliteit. Echter, omdat modellen
altijd fouten bevatten, moet onzekerheid in het model in rekening worden gebracht
in het modelgebaseerd regelaarontwerp.
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Dit proefschrift beschouwt het ontwerpen van robuuste regelaars voor feedfor-
ward en feedback ANVC systemen met stochastische breedbandige verstoringen.
De extra moeilijkheid in vergelijking met harmonische verstoringen is allereerst dat
de storende frequenties zijn verdeeld over een bepaalde bandbreedte, wat een re-
latief complexe regelaar vereist met voorgeschreven amplitude- en fase-gedrag in
deze band. De tweede moeilijkheid is, dat de verstoring stochastisch is en daarom
niet precies bekend is in de toekomst, hetgeen de vrijheid in het ontwerp van de
regelaar beperkt.

Momenteel wordt in ANVC toepassingen voornamelijk het Filtered-X LMS al-
goritme gebruikt om het stuursignaal uit te rekenen. Dit algoritme heeft een aantal
aantrekkelijke eigenschappen, zoals zijn eenvoud, zijn goed bekende convergentie-
eigenschappen en zijn robuustheids-eigenschappen. Deze laatste worden verkregen
vanwege de H∞ optimaliteit van het LMS algoritme (v.g.l. [74]) en de passiviteit
van het update algoritme indien voldaan wordt aan een bepaalde strikt positief reëel
conditie welke het model en het echte systeem aan elkaar relateert (v.g.l. [188]).
Ofschoon het algoritme goed geschikt is voor toepassingen met harmonische versto-
ringen, is voor breedbandige toepassingen de convergentie traag en kan de reken-
kundige complexiteit aanzienlijk toenemen, vooral in multikanaals toepassingen.
Dit proefschrift stelt nieuwe algoritmes voor en levert inzicht om de convergentie-
eigenschappen van het Filtered-X LMS algoritme te verbeteren en de rekenkundige
complexiteit te verminderen.

Hoofdstuk 2 legt de wiskundige basis van het proefschrift en beschouwt de H2

optimale feedforward en feedback problemen overeenkomstig een factorisatie bena-
dering, en verduidelijkt de nauwe relatie tussen feedforward en feedback problemen
aan de hand van de Youla parameterizatie. Het effect van ruis op het input sig-
naal (d.w.z., het referentie-signaal in feedforward configuraties) wordt geanalyseerd,
evenals het effect van een weging op het niveau van het stuursignaal. Beide redu-
ceren de versterking van de optimale feedforward regelaar, of de Youla parameter,
in bepaalde frequentiebanden.

Hoofdstuk 3 gaat in op het nominale regelprobleem en beschouwt daarvoor al-
lereerst het nauwkeurig identificeren van modellen. Hiervoor wordt een vergelijking
gemaakt tussen de identificatie van een prediction error model met output error
structuur (PEM-OE) en de identificatie van een state-space model door middel
van een subspace model identificatie methode, meer precies de PO-MOESP me-
thode [181]. Het blijkt dat een snelle implementatie van het PO-MOESP algoritme
betere resultaten geeft dan de PEM-OE methode in het identificeren van een 20e
orde trillende plaat systeem met 4 ingangen en 4 uitgangen. Het tweede deel van
het hoofdstuk stelt een methode voor om de H2 optimale regelaar voor feedfor-
ward en feedback toepassingen te schatten door middel van een control-relevante
identificatie. De kern gedachte in control-relevant schatten van de regelaar (of een
factor die de regelaar bepaalt), is dat de regelaar wordt ontworpen door expliciet de
kostenfunctie voor het regelprobleem te minimaliseren gebruikmakend van gemeten
data, in plaats van het minimaliseren van een kostenfunctie die volledig wordt be-
paald door (onzekere) modellen van het systeem. Op deze manier kan onzekerheid
in de spectrale factoren van het referentie- en het verstoringssignaal gedeeltelijk
worden gecompenseerd, hetgeen leidt tot betere schattingen van de H2 optimale
regelaar.
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Hoofdstuk 4 beschouwt het ontwerpen van een robuuste regelaar door de onze-
kerheid van het model expliciet in rekening te brengen door middel van een pro-
babilistische benadering. De probabilistische benadering werd aanvankelijk door
Sternad en Ahlén [164] voorgesteld voor feedforward- en filterproblemen in het
kader van polynomiale-modellen. In dit proefschrift wordt deze probabilistische
benadering overgenomen en uitgebreid voor state-space modellen, waarbij de B en
D of de C en D matrices verstoord zijn door stochastische onzekerheid met een ge-
middelde van nul en een bekende covariantie. Extra frequentie-afhankelijke weging
van de onzekerheid kan worden meegenomen in de onzekerheidsmodel-beschrijving.
Gebruikmakend van dit onzekerheidsmodel wordt een robuuste feedforward rege-
laar ontworpen welke de H2 optimale prestatie, gemiddeld over de verdeling van
de modelonzekerheid, optimaliseert. Evenals bij de control-relevante schatting van
de nominale regelaar in Hoofdstuk 3, wordt er aangetoond dat de control-relevante
schatting kan worden uitgebreid voor het schatten van de robuuste feedforward
regelaar. Verder, blijkt dat voor feedback toepassingen gebruikmakend van deze
robuuste feedforward regelaar in combinatie met Internal Model Control, de ro-
buustheid van de stabiliteit van de gesloten lus wordt verbeterd.

Hoofdstuk 5 presenteert een theoretische spinoff van Hoofdstuk 2 met betrek-
king tot de convergentie analyse van het Filtered-U LMS algoritme, welke de infinite
impulse response (IIR) uitbreiding is van het Filtered-X LMS algoritme. De ana-
lyse van de convergentie van adaptieve algoritmes welke de coëfficiënten van een
IIR filter adapteren, is in de literatuur bekend als een moeilijk probleem, omdat
de kostenfunctie in het algemeen een niet-convexe functie is van de adaptieve fil-
tercoëfficiënten. Recentelijk, hebben Wang en Ren [187] voorwaarden afgeleid voor
de globale convergentie van het Filtered-U LMS algoritme, onder de beperkende
aanname dat perfecte uitdoving van alle stoorsignalen (op meetruis na) mogelijk is.
Aan deze aanname wordt in de praktijk vaak niet voldaan vanwege vertraging en
niet-minimumfase nulpunten in het systeem. In dit hoofdstuk wordt er aangetoont
dat deze aanname overbodig is, door analyse van de structuur van de optimale re-
gelaar en de resterende verstoring. Gebaseerd op de structuur van de optimale op-
lossing van de feedforward regelaar wordt er tevens een preconditionerings-methode
voor het Filtered-U LMS algoritme voorgesteld, waarmee de convergentie snelheid
wordt verbeterd. Deze preconditionering is analoog aan de preconditionering van
het Filtered-X LMS algoritme zoals voorgesteld door Elliott e.a. [47].

Hoofdstuk 6 breidt het ontwerp van de probabilistische robuuste regelaar van
Hoofdstuk 4 uit voor adaptieve algoritmes. De robuustheid van het Filtered-X
LMS algoritme en het preconditioneerde Filtered-X LMS algoritme met betrekking
tot modelfouten wordt vergroot door expliciet de modelonzekerheid in rekening te
brengen. De nieuwe robuuste adaptieve algoritmes worden verkregen door LMS
schattingen van de gradient van de gemiddelde kwadratische fout gemiddeld over
de modelonzekerheids-verdeling. De robuustheid van het adaptieve algoritme wordt
effectief vergroot, zonder teveel prestatie te verliezen, zoals het geval bij het gebruik
van de leaky variant van het Filtered-X LMS algoritme. Echter, de prijs die wordt
betaald is een toename in de rekenkundige complexiteit omdat het aantal kolommen
van de regressor wordt uitgebreid.

De laatste bijdrage van dit proefschrift is beschreven in Hoofdstuk 7, waarin
het probleem van feedforward actief regelen wordt geanalyseerd in een Kalman-
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filter toestandsschattings probleem. Deze context is met name aantrekkelijk voor
toepassingen waarin het (preconditioneerde) Filtered-X LMS algoritme niet het
benodigde convergentiegedrag levert. Het probleem van het actief regelen wordt
hergeformuleerd in een toestandsschattings probleem, waarbij de toestand bestaat
uit de adaptieve filtercoëfficiënten en de toestand van het systeem. Er wordt aange-
toond dat het algoritme vereenvoudigt tot het modified Filtered-X RLS algoritme,
zie, bijvoorbeeld, [51], wanneer de toestand van het systeem perfect bekend kan wor-
den verondersteld, hetgeen een vereenvoudiging is van de praktijk. Een fast-array
implementatie van het Kalman-filter algoritme is afgeleid om een implementatie te
verkrijgen die beter is geschikt voor praktische toepassingen.

Concluderend, dit proefschrift stelt een aantal algorithmische instrumenten voor
die van dienst kunnen zijn bij het actief regelen in de praktijk om robuustheids-
eigenschappen te verbeteren en om convergentie-tijden en rekenkundige complexi-
teit te verminderen. Het onderzoek leidt ook tot nieuwe onderzoeksvragen, die tot
verdere verbeteringen van algoritmes voor ANVC kunnen leiden, zoals in hoofdlij-
nen aangegeven in Hoofdstuk 8.
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and A. Rantzer, editors, The Åström Symposium on Control, pages 15–42,
Lund, Sweden, Aug. 1999.

[104] L. Ljung. System Identification - Theory for the User. Prentice-Hall, Upper
Saddle River, NJ, USA, 1999.

[105] L. Ljung. System Identification Toolbox — For Use with Matlab. The
Mathworks, Natick, MA, USA, user’s guide version 5 edition, 2002.
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